HEBRON PROJECT
Comprehensive Study Report
Nearshore Bull Arm Spill Trajectory Modelling Report
July 2011 Revision with Track Changes
Results from Simulations of Fuel Oil Spills in Bull Arm, Trinity Bay, Newfoundland
Executive Summary

ASA has used its SIMAP model system to simulate spills of fuel oil in Bull Arm, Trinity Bay, Newfoundland. The model utilizes wind data obtained from model hindcasts and field measurements, and current data from a hydrodynamic model. The SIMAP model was used in stochastic and deterministic modes to determine the range of possible water surface, subsurface and shoreline oiling predicted to occur. Spills simulated at this site are instantaneous surface releases of 100m3 of marine diesel fuel and 1,000m3 of intermediate fuel oil (IFO-180). Simulations were performed for both summer and winter environmental conditions. Winter season spills were simulated with and without sea ice present.

Wind data were obtained from the MSC50 Wind Hindcast model that provides winds for the north Atlantic for the period 1954 through 2008. Wind speed and direction data for the most recent 30 years of this period were used in the oil spill modeling. Wind data collected during the construction Hibernia gravity-based structure at the Bull Arm site in 1995 through 1997 were used to supplement the model winds and provide wind forcing specific to the oil release location.

Two separate hydrodynamic simulations were carried out using the HYDROMAP model in order to capture the combined tide and wind-driven currents in Bull Arm and Trinity Bay. Tidal current simulations were conducted using seven astronomical tidal constituents (M2, S2, N2, K2, O1, K1, and P1) to develop tidally driven surface currents over the entire region. Wind driven current simulations were conducted for eight wind directions, each using a constant wind speed of 8 m/s. During simulations, the wind forced currents were scaled depending on the actual wind speed and direction for each simulation time step, these scaled wind forced currents were added to the tidal current simulation to create a combined current. This results in a current field covering Trinity Bay and Bull Arm that accounts for tide and wind driven currents and is used to drive the oil spill simulations.

The stochastic model was used to determine the probability of oil on the water surface, on the shoreline, and in the water column exceeding the following thickness and concentration thresholds:

- Surface oil average thickness > 0.01 mm (10 µm)
- Shoreline oil average thickness > 0.01 mm (10 µm) over the shoreline
- Subsurface oil (entrained in water) average concentration > 10 ppb

Results from the stochastic model simulations are summarized in the table below.

<table>
<thead>
<tr>
<th>Oil Release</th>
<th>Season</th>
<th>Surface Area Oiled at >0.01 mm (km2)</th>
<th>Shoreline Oiled at >0.01 mm (km)</th>
<th>Entrained Oil Volume after 30 days (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m3 Marine Diesel</td>
<td>Summer</td>
<td>581.4</td>
<td>19.8</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>371.2</td>
<td>10.1</td>
<td>65.3</td>
</tr>
<tr>
<td>1,000m3 IFO 180</td>
<td>Summer</td>
<td>1524.8</td>
<td>144.3</td>
<td>0.017</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>1670.5</td>
<td>137.5</td>
<td>0.024</td>
</tr>
</tbody>
</table>
Individual spill simulations performed as part of the stochastic modeling were ranked to determine the 95th percentile spill for oiled sea surface area, oiled shoreline length and entrained oil volume at the defined thresholds. Maps were prepared showing surface oil, shoreline oil and entrained oil for the 95th percentile cases. Mass balance graphs depicting the volume of oil present on the surface, evaporated to the atmosphere, entrained in the water column, stranded on the shoreline and decayed by natural processes are also generated.
Table of Contents

Executive Summary .. ii
Table of Contents ... iv
List of Figures .. v
List of Tables ... vi
1. Introduction ... 1
2. Model Inputs and Spill Scenarios .. 1
 2.1 Study Area ... 2
 2.2 Model Scenarios ... 3
 2.3 Oil Characterization .. 4
 2.4 Wind Data ... 4
 2.5 Current Data .. 10
 2.6 Ice Data ... 21
 2.7 Shoreline Type Data ... 23
3. Modeling Description .. 25
 3.1 Surface Releases of Fuel Oils in Bull Arm .. 25
4. Model Results ... 29
 4.1 Stochastic Model Results .. 29
 4.2 Deterministic Model Results .. 30
5. References .. 33
List of Figures

Figure 2.1-1. Map showing location of Bull Arm. ... 3
Figure 2.4-1. Map of the Bull Arm, Trinity Bay area showing the location of the potential diesel and fuel oil spills and the MSC50 wind data sites. ... 5
Figure 2.4-2. Wind rose diagram from the MSC50 model hindcast at location M12874 7
Figure 2.4-3. Wind rose diagram from the MSC50 model hindcast at location M12874 for the Spring season. .. 7
Figure 2.4-4. Wind rose diagram from the MSC50 model hindcast at location M12874 for the Summer season. ... 8
Figure 2.4-5. Wind rose diagram from the MSC50 model hindcast at location M12874 for the Fall season. .. 8
Figure 2.4-6. Wind rose diagram from the MSC50 model hindcast at location M12874 for the Winter season. ... 9
Figure 2.4-7. Wind rose diagram from the Oceans Limited data collected at the Hibernia GBS construction site during 1995 and 1996. ... 9
Figure 2.5-1. Map of the large scale ocean currents in the Newfoundland region. (Source: U.S. Coast Guard, International Ice Patrol). .. 11
Figure 2.5-2. HYDROMAP model grid of Trinity Bay and Bull Arm. .. 13
Figure 2.5-3. Trinity Bay hydrodynamic model grid showing detail in the Bull Arm area. 14
Figure 2.5-4. Comparison of observed water elevation (top plot) versus model predicted water elevation (bottom plot) at Long Cove, Trinity Bay ... 15
Figure 2.5-5. Model predicted mean surface flood tidal currents in the area of Bull Arm. The current vector in the Current Scale window represents a current speed of 1 cm/s (0.02 knots). 16
Figure 2.5-6. Model predicted mean surface ebb tidal currents in the area of Bull Arm. The current vector in the Current Scale window represents a current speed of 1 cm/s (0.02 knots). 17
Figure 2.5-7. Wind speed and direction derived from the MSC50 model hindcast data (top plot) and surface current speed and direction (bottom plot) predicted by the hydrodynamic model for the Bull Arm spill site. .. 18
Figure 2.5-8. Model predicted surface currents generated by a west wind in the area of Bull Arm. The current vector in the Current Scale window represents a current speed of 50 cm/s (1 knot). ... 19
Figure 2.5-9. Comparison between the model predicted near-surface current (top plot) and the near-surface current measured at the Bull Arm spill site by Seaconsult in January and February 1991. The plots show the magnitude of the east-west and north-south components of the near surface currents. .. 20
Figure 2.6-1. Total accumulated ice coverage for the period of record from the Canadian Ice Service. .. 21
Figure 2.6-2. Ice concentration chart from the Canadian Ice Service for the week of 12 March, 1990. .. 22
Figure 2.7-1. Bull Arm shoreline type classifications used in the oil spill modeling. (EMCP 2010) .. 24
Figure 3.1-1. Map showing Study Area with Bull Arm spill site ... 25
Figure 3.1-2. Rose diagram of all summer winds from MSC50 site 12874 (left plot) compared to wind sampled by the SIMAP model for the summer season spill simulations. 26
Figure 3.1-3. Rose diagram of all winter winds from MSC50 site 12874 (left plot) compared to wind sampled by the SIMAP model for the winter season spill simulations. 27
List of Tables
Table 2.2-1. Oil spill scenarios modeled at the Bull Arm location. .. 4
Table 2.3-1. Characteristics of oil used in the spill simulations.. 4
Table 2.7-1 Shoreline width, maximum shoreline oil thickness and removal half-life times for various shore types (based on Gundlach, 1987). ... 23
Table 3.1-1. Spills of marine diesel and intermediate fuel oil released at the Bull Arm site modeled using the 3D fates model. ... 28
Table 4.1-1. Summary of surface oiling from the stochastic simulations of marine diesel and intermediate fuel oil released at the Bull Arm site. Values in the table are from the individual spill ranked as the 95th percentile in each category. ... 29
Table 4.2-1. Summary of deterministic model mass balance at the end of the 30-day simulations. .. 31
1. Introduction
ExxonMobil Canada Ltd. has contracted ASA for oil spill modeling services to simulate spills at locations off the coast of Newfoundland and Labrador associated with the Hebron Project. The SIMAP model was used to simulate hypothetical oil spills in Bull Arm, Trinity Bay representative of spill characteristics associated with potential releases from vessels supporting construction of the offshore platform. The model scenarios utilize wind data obtained from model hindcasts and field measurements, and current data from multiple hydrodynamic models. The SIMAP model was used in both stochastic and deterministic modes to determine the range of possible water surface, subsurface and shoreline oiling predicted to occur. The stochastic modeling provides insight into the spatial extent of probability of oiling in response to the meteorological and oceanographic conditions in the Study Area and the deterministic model results show the predicted oil path and associated weathering for a specific spill event. The dominant environmental factors that influence surface oil transport are winds and currents. For this study, the model scenarios utilized wind data obtained from model hindcasts and field measurements, and current data from multiple hydrodynamic models.

This report presents the model input data and model results for simulations of fuel oil spills performed at the Bull Arm site. A companion report provides the same information for spill simulations performed at the Hebron offshore location. Also included in the report is a description of the model systems used to perform the modeling.

2. Model Inputs and Spill Scenarios
The spill scenarios modeled were defined in consultation with ExxonMobil Canada Properties and ExxonMobil Biomedical Sciences to represent the spills that may occur at the near shore site in Bull Arm. In Bull Arm, the potential spills consist of either marine diesel or intermediate fuel oil releases on the water surface from vessels involved in construction of the platform. These spills may occur at any time of year and under a range of environmental conditions, including partial sea ice coverage.

The SIMAP system was used to simulate all oil spills. The model simulates the transport and weathering of the oil released onto the water surface. This section describes the model inputs characterizing the site and spill scenarios, including wind, current, ice, shore type, and spill characteristics (oil type, volume and duration).

A previous oil spill modeling study was completed for the Hebron project in 2010 (AMEC, 2010). In this study, spill model simulations were run to determine the trajectory of the surface release of fuel oil spills at the Bull Arm site. Simulations were allowed to run until the spill terminated on a coastline or external model boundary (edge of the model grid), or for a maximum of thirty days. A model simulation was commenced on each day of the year for a thirty year period and allowed to run for thirty days or until termination on the shoreline. The results from these simulations for each month of the year were overlain on a grid of the Bull Arm-Trinity Bay region and the number of times surface oil passed through each grid cell was counted to determine the probability that oil released during the month would reach any place within the gridded water...
This approach is deemed deterministic in that the model is forced using a prescribed set of wind data to generate a set of model trajectories that can be reproduced at any time by using the same input data set. Results from these model simulations are presented in the AMEC (2010) report as maps of surface oil probability for each of the four seasons.

In contrast to the deterministic approach employed in the previous study, this present study utilized a stochastic approach to determine the potential fate of fuel oil spills in Bull Arm. In this approach, a spill trajectory model is run repeatedly but with a randomly selected start date that is determined by a random number generator and a seed value. Using the same MSC50 wind hindcast model data to define the wind field, each oil spill simulation was run using a wind time series that started on the randomly selected date and run for 30 days. In this approach, a sufficient number of model runs will adequately sample all of the variability in the wind speed and direction in the region of interest and result in a prediction of the probability of oil pathways for a spill at the prescribed location. Running multiple spill simulations during a single season will provide a reliable prediction of the oiling probability for a spill occurring during that season.

2.1 Study Area

The Island of Newfoundland is composed of a series of islands off the east coast of Canada, and along with Labrador forms the easternmost Canadian province. The relatively shallow waters of the continental shelf extend eastward up to 500 km from the Newfoundland coast. Known as the Grand Banks, this area contains significant petroleum resources. The Hebron field is located near the edge of the Grand Banks more than 300km east of St John’s (map in Figure 2.1-1).

Trinity Bay is an estuary on the northeastern coast of Newfoundland. The long axis of the Bay, approximately 100 km long, is orientated northeast-to-southwest with an opening to the ocean facing the northeast. Bull Arm extends from the southwest corner of the Bay towards the northwest. Trinity Bay and Bull Arm are relatively deep (hundreds of meters), hence tidal currents are small and wind driven circulation is a major component of the currents.
2.2 Model Scenarios

Multiple hypothetical spill scenarios were modeled to assess the fate of oil spilled from the nearshore site in Bull Arm. The hypothetical spills at the Bull Arm site were assumed to be instantaneous releases of either 100 m³ of marine diesel fuel or 1,000 m³ of Intermediate intermediate fuel oil (IFO-180) onto the water surface. Each scenario simulated the transport and weathering of the spilled oil for a period of 30 days following the release. A 30-day period was used as it provides sufficient time for oil weathering and degradation processes to occur and for any remaining surface oil to exit Trinity Bay and enter the open ocean. Six different scenarios were modeled, both stochastic and deterministic, as summarized in Table 2.2-1. The characteristics of the spilled oils are discussed in Section 2.3.
TABLE 2.2-1. OIL SPILL SCENARIOS MODELED AT THE BULL ARM LOCATION.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Spill Volume</th>
<th>Spill Duration</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull Arm (47.818333° N, 53.866667° W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vessel Discharge Marine Diesel</td>
<td>100 m³</td>
<td>Instantaneous</td>
<td>Summer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instantaneous</td>
<td>Winter - No Ice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instantaneous</td>
<td>Winter - 65% Ice</td>
</tr>
<tr>
<td>Vessel Discharge IFO-180</td>
<td>1,000 m³</td>
<td>Instantaneous</td>
<td>Summer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instantaneous</td>
<td>Winter - No Ice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instantaneous</td>
<td>Winter - 65% Ice</td>
</tr>
</tbody>
</table>

2.3 Oil Characterization

The characteristics of the oil types used in the spill simulations are listed in Table 2.3-1. The data used to characterize the fuels come from the Environment Canada Oil Properties database (http://www.etc-cte.ec.gc.ca/databases/oilproperties/). The SIMAP model uses these characteristics to calculate oil weathering simultaneously with oil transport in the environment.

<table>
<thead>
<tr>
<th>Oil</th>
<th>Spill</th>
<th>API Gravity</th>
<th>Density (g/cm³)</th>
<th>Viscosity (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Diesel</td>
<td>Vessel in Bull Arm</td>
<td>37.6</td>
<td>0.82910 @ 25° C</td>
<td>4.0 @ 25° C</td>
</tr>
<tr>
<td>IFO-180</td>
<td>Vessel in Bull Arm</td>
<td>14.8</td>
<td>0.9670 @ 25° C</td>
<td>2324.0 @ 25° C</td>
</tr>
</tbody>
</table>

2.4 Wind Data

Wind data for near shore model simulations were obtained from two sources, a model hindcast near the Study Area, and observations from a previous GBS construction program near the Study Area. The hindcast wind data was obtained from the MSC50 Wind Hindcast (Swail, et al., 2006), a model reanalysis product that provides hindcast winds for the north Atlantic for the period 1954 through 2008, as provided by Environment Canada, MSC Atlantic Operations. The data are supplied at evenly spaced points 0.1° apart and provide hourly speed and direction. Figure 2.4-1 is a map showing the locations of the MSC50 model data in Trinity Bay. The most recent 30 years (1978 – 2008) of the MSC50 wind data were used in the oil spill model simulations. Wind data were also obtained at the site in Bull Arm during the construction of the Hibernia GBS from January 25, 1995 through May 26, 1997 by Oceans Ltd. These observations included wind speed and direction collected on a 10-minute interval for the 28 month period. The observed data show that wind speed and direction inside Bull Arm differs from wind in Trinity Bay due to the steering effects of the surrounding land.

The requirements of a modeling study utilizing a stochastic approach require multi-year or multi-decade wind time series data covering an area at least as large as the released oil is expected.
to cover. This is necessary in order to adequately represent the spatially variable range of possible wind conditions over a long time period. Wind data measured at sites within Bull Arm in the past do not meet either of these criteria. The MSC50 wind data are the best available for this modeling study.

The MSC50 Wind and Wave reanalysis project has its roots in three previous oceanographic modeling studies in the North Atlantic, the most recent of which is the AES40 study (Swail, et al., 2006). In AES40, winds for the period 1954 through 2004 were hindcast and supplemented with measured winds from buoys, platforms and C-MAN stations. The wind hindcast was evaluated against satellite altimeter and in-situ wind speed measurements (Swail, et al., 2006). The MSC50 project was intended to improve on the AES40 model by increasing the resolution within the Canadian east coast region and increasing overall model accuracy in order to reduce uncertainties in the hindcast predictions.

Figure 2.4-1. Map of the Bull Arm, Trinity Bay area showing the location of the potential diesel and fuel oil spills and the MSC50 wind data sites.

The MSC50 wind model hindcast incorporates the passage of storm systems, particularly those that originate along the US New England coast in winter and move into Canadian waters. Sea ice was also incorporated into the MSC50 model with the ice edge changing on a weekly basis, sufficient to capture changes in sea ice during transition seasons.
Comparison of the in-situ data from the period 1954-2005 with the MSC50 model hindcast show consistent agreement (Swail, et al., 2006). Swail, et al. (2006) state:

“The wind and wave data are considered to be of sufficiently high quality to be used in the analysis of long return period statistics, and other engineering applications.”

There were no wind data measurements identified as part of this study within Bull Arm or Trinity Bay that correspond to MSC50 hindcast node locations, so no direct comparisons between the field measurements and model hindcast winds were conducted.

Figure 2.4-2 is a wind rose showing the distribution of wind directions and speeds at the southern end of Trinity Bay according to the MSC50 model hindcast data obtained for location M12874 (see map in Figure 2.4-1). The wind comes from all directions at this site but it comes most frequently from the south through the northwest. Figures 2.4-3 through 2.4-6 are wind roses showing the speed and direction of the wind at MSC50 site 12874 for the four seasons. As can be seen in these plots, summer season winds are predominantly from the southwest with maximum speeds of 10-15 m/s. Winter season winds at this site are predominantly from the west with speeds up to 20-25 m/s. Spring season wind direction is highly variable as is typical for transition seasons at these latitudes. Fall wind direction is somewhat less variable than spring wind with a slightly higher frequency of wind coming from the west.

The wind rose showing the data collected by Oceans Ltd. in Mosquito Cove in 1995-1996 (Figure 2.4-7) shows a predominance of wind coming from the northwest, suggesting that the land bordering Bull Arm is steering the wind along the long axis of the fjord. Comparison of the two wind data sets also shows that winds in Bull Arm are generally of lower speed than the MSC50 wind.
Figure 2.4-2. Wind rose diagram from the MSC50 model hindcast at location M12874.

Figure 2.4-3. Wind rose diagram from the MSC50 model hindcast at location M12874 for the Spring season.
Figure 2.4-4 Wind rose diagram from the MSC50 model hindcast at location M12874 for the Summer season.

Figure 2.4-5 Wind rose diagram from the MSC50 model hindcast at location M12874 for the Fall season.
Figure 2.4-6 Wind rose diagram from the MSC50 model hindcast at location M12874 for the Winter season.

Figure 2.4-7. Wind rose diagram from the Oceans Limited data collected at the Hibernia GBS construction site during 1995 and 1996.
The wind data collected in prior studies are not sufficient to run the simulations defined for this study because the data do not have adequate spatial or temporal coverage. The modeling requires a long-term wind record such as the MSC50 model hindcast provides, but the MSC50 data do not include Bull Arm, so it was necessary to correlate the Oceans Ltd wind data collected in Bull Arm to a nearby MSC50 grid node (M12874) to correct for the difference in wind speed between the two locations and to account for any possible steering affects inside the fjord. Details of the method used to adjust wind data from site M12874 so that it accounts for the change in speed and direction seen in Bull Arm are described in the previous modeling report (AMEC, 2010). The method used the relationship between speed at site M12874 and speed measured at the Bull Arm site to yield a linear regression equation for adjusting the MSC50 wind speeds. The adjustment of wind direction was done using a fixed correction based on the relationship between the directions at site M12874 and the Bull Arm observations (See AMEC, 2010 for details). From this analysis a 30-year wind time series specific to the Bull Arm spill site was produced and used in the oil spill model simulations along with data from the MSC50 sites in Trinity Bay shown in Figure 2.4-1. This provides the SIMAP model with a spatially- and time-varying wind field over Bull Arm and Trinity Bay.

Simulations of the fuel oil spills in Bull Arm use multiple 30-year wind speed and direction time series from the MSC50 model grid nodes in combination with a 30-year modified wind time series in Bull Arm described above. The wind data collected in prior studies is not sufficient to run the simulations defined for this study because the data do not have adequate spatial or temporal coverage. The MSC50 wind data are the best available for the purpose of determining the probabilities of oil trajectories from spills for this kind of risk assessment.

2.5 Current Data

The Labrador Current dominates the large scale ocean circulation in the Newfoundland region. This current originates in the Arctic Ocean and flows south along the coasts of Labrador and Newfoundland, while the North Atlantic current farther offshore flows north and east across the Atlantic Ocean (see the map in Figure 2.5-1). Currents at smaller scales can be highly variable and it was necessary to develop hydrodynamic model datasets to characterize the currents in the Study Area sufficient to simulate the movement of spilled oil.
A hydrodynamic model grid covering Trinity Bay and Bull Arm was prepared with a base cell resolution of 2 km (Figure 2.5-2 shows the grid). The grid cell size gets increasingly smaller moving from the mouth of Trinity Bay to Bull Arm (Figure 2.5-3) to provide maximum resolution in the immediate area of the spill site. Depth data used in the model grid were obtained from navigational charts (NOAA/C-MAP) and the RTM30_PLUS (Becker and Sandwell, 2008) database.

Two separate hydrodynamic simulations were carried out using the HYDROMAP hydrodynamic model (Isaji, et al., 2001) in order to capture the combined tide and wind-driven currents in the area. Tidal current simulations were conducted for seven astronomical constituents (M2, S2, N2, K2, O1, K1 and P1). The open boundary specification outside Trinity Bay was based on
global tide data obtained from the Oregon State University Inverse Tidal Model, TPXO5. TPXO5, which is a data assimilation model constrained by satellite altimetry data, TOPEX/Poseidon, as described by Egbert, Bennett, and Foreman, 1994. Using these tidal constituent characteristics (amplitude and phase) at the open boundaries to force the model, it is possible to predict the associated tidal currents within Trinity Bay and Bull Arm for any given date and time. Figure 2.5-4 shows the observed tidal elevation at Long Cove (top plot) and the model predicted tidal elevation (bottom plot) for the same location. The model prediction compares reasonably well with the observed water elevations except that the model lacks small fluctuations seen in the observed data that are a result of wind forcing. Figures 2.5-5 and 2.5-6 are maps of the model predicted surface currents during mean flood and ebb flow conditions in the vicinity of Bull Arm.

In order to account for the effect of wind on currents in Bull Arm and Trinity Bay, wind driven current simulations were generated for eight wind directions each assuming a constant wind speed of 8 m/s. These hydrodynamic simulations provided the wind driven currents for the range of possible wind directions, which can be added to the tidal current simulation to create a combined current. The current generated by each of the eight wind directions represents typical circulation resulting from a day-long wind event with a wind speed of 8 m/s.

In the oil spill model, these tide and wind driven currents are automatically reassembled into a single hydrodynamic field. Astronomic tidal currents are constructed based on the date and time of the spill simulation. Based on the average wind speed and direction occurring at this time, one of the eight wind driven currents is scaled and superimposed on the tidal current. This results in a current field for Trinity Bay and Bull Arm for use in the oil spill model that accounts for tide and wind driven currents.

In hydrodynamic modeling studies of this kind when the effects of wind forcing over the water surface are to be included, it is desirable to model the tide and wind effects simultaneously for the entire period being simulated. The present study utilized a wind dataset spanning 30 years, an extremely long time period over which to simulate a wind forced current. It was deemed not practical to do this because of the extraordinarily large file sizes generated during this process for such an extended time period. It is considered sufficient to utilize the scaling approach described above for the purposes of estimating the statistics of oil spill impacts.

The influence of wind on surface water circulation can be seen in the model predicted surface currents as shown in Figure 2.5-7. In this figure the wind speed and direction time series calculated for the Bull Arm spill site (using the methodology described in the previous section) is compared with the model predicted surface current speed and direction. As can be seen in Figure 2.5-7 the surface current (bottom plot) responds relatively quickly to the changing wind (top plot) inside Bull Arm. An example surface current resulting from an 8 m/s west wind is shown on the map in Figure 5.2-8.
Figure 2.5-2. HYDROMAP model grid of Trinity Bay and Bull Arm.
Figure 2.5-3. Trinity Bay hydrodynamic model grid showing detail in the Bull Arm area.
For additional validation of the hydrodynamic model developed for Bull Arm and Trinity Bay, current measurements collected at the Hibernia GBS site from January 20 to February 5, 1991 (Seaconsult, 1991) were compared to the model predicted current direction and velocity. Figure 2.5-9 shows the east-west and north-south components of near-surface currents predicted by the model (top plot) and measured by Seaconsult (Seaconsult, 1991) (bottom plot) at the Bull Arm spill site. The comparison shows that the model is in general agreement with observations in predicting the change in direction of surface currents, however the model appears to over predict the current magnitude in some instances while under-predicting it in others. This level of agreement is sufficient for a risk assessment study where multiple (hundreds) of individual spill simulations are completed and a range of spill trajectories developed into probability statistics to assess the most likely spill scenarios. The available field measurements of currents in Bull Arm and Trinity Bay do not have sufficient spatial or temporal coverage to drive oil spill model simulations.

Other effects on the circulation in Bull Arm and Trinity Bay were not considered significant enough to include in the hydrodynamic model application to the region. The lack of major river flow in the region means that stratification is mainly from solar heating. Such stratification may develop in summer, yet the effect is not significant for accurately simulating the trajectory and fate of surface oil spills. Non-linear effects that may, for example, result in advection of momentum of other effects due to bottom stress are only significant in shallow water. Trinity Bay is generally too deep for these terms to become a dominant feature except near shore where spatial scales are too small to consider. Stokes drift is calculated by the SIMAP model.
using the wind field specified for the spill simulation. In this case the winds come from the MSC50 time series. Spill simulations were not performed using storm event winds, however, the MSC50 wind hindcast includes storm generated winds in its hindcast data. In addition, bay wide oscillations in the circulation would have too high a frequency for the time scales considered in the oil trajectory modeling.

Figure 2.5-5. Model predicted mean surface flood tidal currents in the area of Bull Arm. The current vector in the Current Scale window represents a current speed of 1cm/s (0.02 knots).
Figure 2.5-6. Model predicted mean surface ebb tidal currents in the area of Bull Arm. The current vector in the Current Scale window represents a current speed of 1cm/s (0.02 knots).
Figure 2.5-7. Wind speed and direction derived from the MSC50 model hindcast data (top plot) and surface current speed and direction (bottom plot) predicted by the hydrodynamic model for the Bull Arm spill site.
Figure 2.5-8. Model predicted surface currents generated by a west wind in the area of Bull Arm. The current vector in the Current Scale window represents a current speed of 50cm/s (1 knot).
Figure 2.5-9. Comparison between the model predicted near-surface current (top plot) and the near-surface current measured at the Bull Arm spill site by Seaconsult in January and February 1991. The plots show the magnitude of the east-west and north-south components of the near-surface currents.
2.6 Ice Data

Sea ice is formed in the autumn in the Arctic and sub-Arctic regions of the world. The growth rate of sea ice depends on surface temperature, the depth of snow cover, and the heat flux in the underlying water. The formation and development of sea ice follows a progression of stages, but the exact timing of these stages at any location is not the same from year to year because of subtle differences in climatic conditions. In the Northern Hemisphere during September and October, the air temperature lowers sufficiently to form a thin sheet of ice on the sea. Freezing temperature for average northern ocean salt water of approximately 3.5% salt composition by weight (usually designated 35 parts per thousand) is -1.8°C (28.8°F).

The presence of sea ice in Newfoundland and Labrador waters was below normal during the winter of 2009-2010 (CIS, 2010). In fact the total accumulated ice coverage in east Newfoundland waters set a new record low during last year’s winter season. Figure 2.6-1 shows the total accumulated ice coverage offshore the Canadian east coast measured by the Canadian Ice Service since the winter of 1968-69. With the exception of the 2002-2003 ice season, ice coverage over the past 15 years has been below the 40 year average.

Figure 2.6-1. Total accumulated ice coverage for the period of record from the Canadian Ice Service.
Ice coverage in the winter of 1989-1990 was at a maximum extent according to the data collected by the Canadian Ice Service. Figure 2.6-2 shows a map of ice concentration in the Newfoundland region for the week of March 12, 1990. The red areas on the map in Figure 2.6-2 show that 100% ice concentration covers portions of the offshore area east of Newfoundland as well as the southern half of Trinity Bay.

The fate and behavior of spilled oil is greatly affected by the presence of ice. Oil spilled before, during, or after freeze-up will follow an arrested pattern of weathering compared to oil spilled on open water. Implementation of algorithms for modeling the movement and fate of oil in the presence of sea ice is based on the percent of ice coverage. From 0 to 30% coverage the ice has no effect on the advection or weathering of a surface oil slick. From 30 to 80% ice coverage, oil advection is steered to the right in the northern hemisphere, surface oil thickness generally increases due to ice-restricted spreading, and evaporation and entrainment are both reduced. Above 80% ice coverage, surface oil moves with the ice, evaporation and entrainment cease, and oil thickness, which can vary widely, is calculated as a function of ice thickness. Appendix A contains a brief summary of the algorithms implemented in the SIMAP model for oil spills in sea ice conditions.
The SIMAP model algorithms are based on an early (1980s - 1990s) understanding of oil / ice interactions. Since that time various studies (mostly Norwegian) have improved the understanding of oil / ice interactions, but most of that work was focused on developing oil spill response strategies, not oil spill model algorithms.

The impediment to more robust simulation of the interactions of oil in ice is not a lack of understanding of those processes, as much as it is a lack of data to define the characteristics of the ice over small spatial scales (centimeters to tens of meters) and short time periods (hours to days). A review of oil spill models by Reed, et. al. (1999) identified this as the overriding issue holding back realistic modeling of oil in ice:

“... the prognosis for improved representation of oil behavior in ice-infested waters remains bleak until our capability to model ice alone improves. … the processes governing oil behavior occur at scales of a few centimeters to a few tens of meters within an ice field. Ice model resolutions are typically at scales of kilometers, to account for effects at active boundaries, such that very crude, ad hoc parameterizations become necessary.”

Ice coverage in Bull Arm can range from 0 to 100% through the winter season depending on the month and the severity of the winter. Vessel operations during the construction of the Hebron GBS will likely not occur when ice concentration exceeds 65% ice coverage. All winter spill scenarios with sea ice present assume that Bull Arm and Trinity Bay are covered with a 65% ice concentration.

2.7 Shoreline Type Data

The SIMAP model utilizes a specification of the shoreline type in order to simulate oil interactions with the shoreline (see the description of these interactions in Appendix A). The shoreline in Bull Arm was defined as one of two types based on information from the Hebron Project Comprehensive Study Report (EMCP, 2010) as depicted on the map in Figure 2.7-1. The beaches in Bull Arm were classified as Gravel Beach and the remainder of the shoreline was classified as Seaward Rocky Shore. The Eelgrass beds are subtidal habitats and not considered a shoreline type with oil holding capacity. Table 2.7-1 lists the shoreline width, maximum oil thickness and oil removal half-times used in the oil spill modeling.

Table 2.7-1 Shoreline Width, Maximum Shoreline Oil Thickness and Removal Half-Life Times for Various Shore Types (Based on Gundlach, 1987).

<table>
<thead>
<tr>
<th>Shore Type</th>
<th>Width (m)</th>
<th>Maximum Oil Thickness (mm)</th>
<th>Oil Removal Half-time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed Rocky Shore</td>
<td>3</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Gravel Beach (Capelin Beach)</td>
<td>6</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 2.7-1. Bull Arm shoreline type classifications used in the oil spill modeling. (EMCP 2010)
3. Modeling Description

3.1 Surface Releases of Fuel Oils in Bull Arm

Spills of marine diesel and intermediate fuel oil at the near shore site in Bull Arm were modeled using the SIMAP stochastic and deterministic (3D fates) models. (Figure 3.1-1 shows the Trinity Bay region with names of local features included). Instantaneous releases of 100 m3 of marine diesel and 1,000 m3 of IFO-180 at the Bull Arm site were simulated under summer environmental conditions and winter conditions with and without sea ice present.

Summer and winter seasons were selected because they exhibit winds with different distinct patterns. Summer winds are predominately form the southwest while winter winds are of higher speed and come most frequently from the west. These two wind regimes represent end members of speed and direction, while the spring and fall winds represent transitions between them. It is not necessary to simulate spills occurring spring and fall because those results would be contained within the summer and winter predictions for oil trajectory and fate.

![Map showing Study Area with Bull Arm spill site](image)

To determine risks of various resources being oiled, multiple model runs using a range of environmental conditions were evaluated. The Monte Carlo method implemented in the SIMAP stochastic model was used to characterize the potential consequences, in terms of surface and shoreline oiling, of spills occurring at the near shore site in summer and winter seasons. Each
Stochastic oil spill scenario included an ensemble of 100 individual simulations, with each run using a randomly varied spill date and time, so that environmental conditions (currents and winds) were varied within the possible range found in the region.

In order to ensure that the 100 model runs sufficiently sample the range of wind speeds and directions found at the Bull Arm site for a season of interest, a comparison of the wind rose from the long term record for that season was compared to the wind rose of the 100 SIMAP simulations for that season, where similar wind roses indicate that the sample size adequately captured the long term wind speed and direction variability. A demonstration of this evaluation is provided for both summer and winter seasons. Figures 3.1-2 and 3.1-3 are plots of the wind rose comparisons for summer and winter. As can be seen, the comparisons show clearly that the wind data are adequately sampled by the oil spill model and the resulting oil trajectories should be representative of the possible spill pathways.

Figure 3.1-2 Rose diagram of all summer winds from MSC50 site 12874 (left plot) compared to wind sampled by the SIMAP model for the summer season spill simulations.
The stochastic analysis provides two types of information to describe the potential spills:

1) areas that might be oiled (as defined by a threshold oil thickness of 0.01mm) and their associated probability of oiling, and
2) the shortest time required for oil to reach any location and/or threshold in the areas predicted to be oiled.

This information is presented for surface oil, shoreline oil, and subsurface oil in maps in Appendix B and in summary tables in subsequent sections of this report. Total hydrocarbons, the group of chemicals that make up crude oil, are divided into two categories, aromatic hydrocarbons, the toxic component of oil, and aliphatic hydrocarbons. For this study only the non-dissolved total hydrocarbons are tracked.

SIMAP’s stochastic simulation results provide insight into the probable behavior of potential oil spills under the environmental conditions expected to occur in the Study Area during each season. The 100 individual model simulations from each stochastic model scenario were ranked to determine the individual spill resulting in the 95th percentile for shoreline oiling, water surface oiling and for oil entrained in the water column. For example, the 95th percentile spill for surface oiling is the single spill resulting in a surface area oiled at a thickness exceeding 0.01 mm that is greater than or equal to 95% of all spills simulated. The 95th percentile spills are identified by selecting the individual spill that ranks as the 95th percentile for:

1. Shoreline oiling - shoreline area oiled with an average thickness > 0.01 mm
2. Water surface oiling – surface area oiled by > 0.01 mm thickness
3. Entrained oil - subsurface oil concentration > 10ppb remaining at the end of the simulation
The deterministic trajectory and fate simulations using the 3D fates model were performed for the 95th percentile spills identified in each stochastic analysis as defined above. The spill scenarios listed in Table 3.1-1 summarize the 95th percentile spills based on the criteria above for surface oiling, shoreline contact and entrained oil amounts.

Results from the 18 simulations (three oil threshold criteria times 6 spill scenarios) listed in Table 3.1-1 provide a time history of oil weathering over the duration of the spill, expressed as the volume of spilled oil on the water surface, on the shore, evaporated, entrained in the water column, and decayed. These results are presented in detail in section 4.

Table 3.1-1. Spills of marine diesel and intermediate fuel oil released at the Bull Arm site modeled using the 3D fates model.

<table>
<thead>
<tr>
<th>Oil Release</th>
<th>95th Percentile for:</th>
<th>Season</th>
<th>Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m³ Marine Diesel</td>
<td>Sea Surface Oiling</td>
<td>Summer</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - 65% Ice</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Shoreline Oiling</td>
<td>Summer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - 65% Ice</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Entrained Oil</td>
<td>Summer</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - 65% Ice</td>
<td>9</td>
</tr>
<tr>
<td>1,000 m³ IFO 180</td>
<td>Sea Surface Oiling</td>
<td>Summer</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - 65% Ice</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Shoreline Oiling</td>
<td>Summer</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - 65% Ice</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Entrained Oil</td>
<td>Summer</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter - 65% Ice</td>
<td>18</td>
</tr>
</tbody>
</table>
4. Model Results

Results of the stochastic modeling are presented first, followed by the 3D fates deterministic model results.

4.1 Stochastic Model Results

The stochastic model was used to determine the probability of oiling the water surface, the shoreline and the water column based on specified thickness and concentration thresholds. The thresholds used for the stochastic model simulations in this study are as follows:

- Surface oil average thickness > 0.01 mm (10 µm)
- Shoreline oil average thickness > 0.01 mm (10 µm)
- Subsurface oil (entrained in water) average concentration > 10 ppb

The 0.01 mm (10 micron) surface oil thickness was selected because it is sufficient to provide a lethal dose to seabirds provided they move through the slick a minimum distance (French-McCay, 2009). Smaller surface oil thicknesses that may result in a sub-lethal dose to seabirds were not considered. French-McCay (2009) provides a summary of recent work and discusses the details of wildlife oiling from surface slicks.

Maps of the stochastic model results are contained in Appendix B. The maps show the predicted probability of oiling. The summer maps are shown first followed by the winter season results.

Summary of Stochastic Model Results

Table 4.1.1 summarizes the results from the Bull Arm stochastic modeling. Table 4.1.1 lists the results from the stochastic model simulations for oiled sea surface area, oiled shoreline length and entrained oil volume for the individual spill ranked as the 95th percentile. The 95th percentile results correspond to the maps of the deterministic model results shown in Appendix C.

TABLE 4.1-1. SUMMARY OF SURFACE OILING FROM THE STOCHASTIC SIMULATIONS OF MARINE DIESEL AND INTERMEDIATE FUEL OIL RELEASED AT THE BULL ARM SITE. VALUES IN THE TABLE ARE FROM THE INDIVIDUAL SPILL RANKED AS THE 95TH PERCENTILE IN EACH CATEGORY.

<table>
<thead>
<tr>
<th>Oil Release</th>
<th>Season</th>
<th>Surface Area Oiled at >0.01 mm (km²)</th>
<th>Shoreline Oiled at >0.01 mm (km)</th>
<th>Entrained Oil Volume after 30 days (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m³ Marine Diesel</td>
<td>Summer</td>
<td>581.4</td>
<td>19.8</td>
<td>58.6</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>371.2</td>
<td>10.1</td>
<td>65.3</td>
</tr>
<tr>
<td>1,000 m³ IFO-180</td>
<td>Summer</td>
<td>1524.8</td>
<td>144.3</td>
<td>.017</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>1670.5</td>
<td>137.5</td>
<td>.024</td>
</tr>
</tbody>
</table>
Summer winds are more often from the southwest which drives oil onto the northeast coast of Bull Arm. Any oil exiting Bull Arm in the summer is driven northeastward up Trinity Bay. Winter winds are most often from the northwest which moves surface oil out of Bull Arm and onto the shoreline at the southern end of Trinity Bay and less frequently towards the northeast and the mouth of Trinity Bay.

The smaller volume 100 m3 marine diesel spills are predicted to have a 10-20% probability of leaving Bull Arm during the summer and a 30-40% probability of leaving Bull Arm under winter conditions. Spills of 1,000 m3 of IFO-180 have a 60-70% probability of leaving Bull Arm during the summer, and a 70-80% probability of entering Trinity Bay during the winter season.

The model predicts that oil from both the 100 m3 marine diesel and 1,000 m3 IFO-180 spills have a small (<5%) probability of leaving Trinity Bay. Some of the surface oil probability maps in Appendix B show oil exiting the northeast corner of the model grid. This oil is >10 days old, the volatile components have evaporated, the oil is at the minimum thickness and moving into open ocean.

Spills of 100 m3 of marine diesel **have** a 60% chance of hitting the Bull Arm shoreline in summer, and 30% probability to do so in the winter season. IFO-180 spills of 1,000 m3 have a 100% chance of impacting the Bull Arm shoreline in the summer and a 90% chance during the winter season.

Entrained marine diesel oil from a 100 m3 spill is predicted to exceed a concentration of 10 ppb 100% of the time within Bull Arm during the summer and winter seasons. Probabilities drop quickly outside of Bull Arm to 10-30% during summer and winter seasons for a small area of southwest Trinity Bay. IFO 180 is a highly viscous fuel that shows almost no entrainment into the water column for spills of 1000 m3.

4.2 Deterministic Model Results

Maps of the deterministic model results are contained in Appendix C. Each map in Appendix C depicts the results from one model simulation chosen from the 100 individual simulations completed by the stochastic model. The simulations were selected because they result in the 95th percentile for sea surface oiling area, shoreline oiling length or entrained oil volume. It should be kept in mind that each map in Appendix C displays the results from a different individual simulation and depict one possible outcome for a spill at the Bull Arm site.

The maps appear in Appendix C in the following order: surface oil, shoreline oil and entrained oil. Each map is followed by a mass balance graph depicting the volume of oil present on the surface, evaporated to the atmosphere, entrained in the water column, stranded on the shoreline and decayed by natural processes.
Summary of Deterministic Model Results

Table 4.2-1 lists the mass balance results for all of the deterministic spill scenarios at the end of the 30-day simulation. The table lists oil volumes in cubic meters.

<table>
<thead>
<tr>
<th>Oil Release</th>
<th>95th Percentile for:</th>
<th>Season</th>
<th>Surface Oil (m³)</th>
<th>Evaporated Oil (m³)</th>
<th>Entrained Oil (m³)</th>
<th>Oil Ashore (m³)</th>
<th>Decayed Oil (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 m³</td>
<td>Marine Diesel</td>
<td>Sea Surface Oiling</td>
<td>Summer</td>
<td>0</td>
<td>52</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>0</td>
<td>13</td>
<td>65</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - Ice</td>
<td>0</td>
<td>49</td>
<td>0</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Shoreline Oil</td>
<td></td>
<td>Summer</td>
<td>0</td>
<td>56</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>0</td>
<td>25</td>
<td>46</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - Ice</td>
<td>0</td>
<td>50</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Entrained Oil</td>
<td></td>
<td>Summer</td>
<td>0</td>
<td>18</td>
<td>59</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>0</td>
<td>11</td>
<td>66</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - Ice</td>
<td>0</td>
<td>51</td>
<td>04</td>
<td>4342</td>
</tr>
<tr>
<td>1,000 m³</td>
<td>IFO 180</td>
<td>Sea Surface Oiling</td>
<td>Summer*</td>
<td>30</td>
<td>170</td>
<td>0</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - No Ice*</td>
<td>20</td>
<td>160</td>
<td>0</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - Ice</td>
<td>0</td>
<td>160</td>
<td>025</td>
<td>680655</td>
</tr>
<tr>
<td></td>
<td>Shoreline Oil</td>
<td></td>
<td>Summer</td>
<td>0</td>
<td>170</td>
<td>0</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - No Ice*</td>
<td>0</td>
<td>160</td>
<td>0</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - Ice</td>
<td>0</td>
<td>170180</td>
<td>020</td>
<td>690675</td>
</tr>
<tr>
<td></td>
<td>Entrained Oil</td>
<td></td>
<td>Summer*</td>
<td>0</td>
<td>155</td>
<td>0</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - No Ice</td>
<td>25</td>
<td>155</td>
<td>0</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Winter - Ice</td>
<td>80</td>
<td>170</td>
<td>040</td>
<td>580670</td>
</tr>
</tbody>
</table>

Spills of 100 m³ of marine diesel oil representing the 95th percentile for surface oiling are predicted to remain entirely within Trinity Bay during the winter and to result in small amounts of weathered oil leaving the Bay during summer. In the winter season, roughly 12% of the oil is predicted to evaporate by the end of the 30-day simulation; more than 50% of the diesel fuel is predicted to evaporate in the summer season spill. The difference in evaporation is due to higher winter wind speeds which entrain more oil in the water column making it unavailable for evaporation.
Spills of 100 m3 of marine diesel oil representing the 95th percentile for shoreline oiling are predicted to impact up to 75% of the Bull Arm shoreline and isolated segments of the Trinity Bay shoreline in both the summer and winter seasons.

Spills of 100 m3 of marine diesel oil representing the 95th percentile for entrained oil are predicted to exceed the 10 ppb concentration threshold for all of Bull Arm and for an area of southwest Trinity Bay in both the summer and winter seasons.

The presence of 65% ice cover reduces the sea surface area covered by marine diesel oil but results in more widespread shoreline impacts. Ice cover significantly reduces the area predicted to exceed the entrained oil concentration of 10 ppb.

Spills of 1,000 m3 of IFO-180 representing the 95th percentile for surface oiling are predicted to oil Bull Arm and extend the length of Trinity Bay during the summer and winter seasons. Roughly 16% of the IFO-180 is predicted to evaporate by the end of the 30-day simulation during both the summer and winter seasons. The IFO-180 is highly viscous which limits its entrainment and enhances conditions for evaporation.

Spills of 1,000 m3 of IFO-180 representing the 95th percentile for shoreline oiling are predicted to impact much of the Bull Arm shoreline and segments of the Trinity Bay shoreline in both the summer and winter seasons. The summer shoreline oiling is restricted to the east and west shorelines in the southern half of Trinity Bay. Winter season shoreline oiling is predicted to affect primarily the east coast of Trinity Bay.

Spills of 1,000 m3 of IFO-180 representing the 95th percentile for entrained oil are predicted to exceed the 10 ppb concentration threshold for small areas of Bull Arm close to the release site. The IFO-180 is highly viscous and does not readily entrain.

The presence of 65% ice cover reduces the sea surface area covered by IFO-180 and does not significantly change shoreline impacts compared with the no-ice condition. The presence of 65% ice cover is predicted to eliminate any entrained oil concentrations greater than 10 ppb.
6. References

submitted to the Office of Environmental Policy and Compliance, U.S. Dept. of the

French, D., M. Reed, S. Feng and S. Pavignano, 1996b. The CERCLA type A natural resource
damage assessment model for coastal and marine environments (NRDAM/CME),
Technical Documentation, Vol. III - Chemical and Environmental Databases. Final
Report, Submitted to the Office of Environmental Policy and Compliance, U.S. Dept. of

Types to Computer Simulate Spills in Coastal Waters, inProceedings of the1987 Oil Spill
conference, pp. 451-457.

Halliwell, G. R., Jr., 1997: Simulation of decadal/interdecadal variability the North Atlantic driven
by the anomalous wind field. Proceedings, Seventh Conference on Climate Variations,
Long Beach, CA, 97-102.

anomalies driven by basin-scale atmospheric circulation anomalies. Journal of Physical
Oceanography, 28, 5-21.

Halliwell, G. R., Jr., R. Bleck, and E. Chassignet, 1998: Atlantic Ocean simulations performed
using a new hybrid-coordinate ocean model. EOS, Fall 1998 AGU Meeting.

in Atlantic Ocean simulations using the Hybrid Coordinate Ocean Model (HYCOM).
EOS, 80, OS304.

Diffusivity in OGCMs. J. Physical Oceanography, 26, 1480-1494.

on behalf of the Intergovernmental Oceanographic Commission (IOC) and the
International Hydrographic Organization (IHO) as part of the General Bathymetric Chart
of the Oceans; British Oceanographic Data Centre (BODC), Liverpool.

Isaji T., E. Howlett, C. Dalton, and E. Anderson, 2001: “Stepwise -Continuous-Variable-
Rectangular Grid Hydrodynamics Model”, in Proceedings of the Twenty-fourth Arctic and

Boca Raton, Florida. 227 p.

Cox-type ocean model and an isopycnic ocean model, part II: the subtropical gyre and

McAuliffe, C.D., 1987. Organism exposure to volatile/soluble hydrocarbons from crude oil spills
– a field and laboratory comparison. Proceedings of the 1987 Oil Spill Conference, API,
p. 275-288.

Vol. 85, Part 4, pp. 655-672.

