
Husky Energy

Development Plan

North Amethyst Satellite Tie-back to SeaRose FPSO

Husky Document No. SR-SRT-RP-0002

Table of Contents

Executive Summary		
1.0	Pro	ject Overview9
	1.1	Purpose and Scope of the Project9
	1.2	History of the Field Discovery9
	1.3	Co-Venturers and Their Respective Interests9
	1.4	Land Ownership9
	1.5	Management9
	1.6	Canada-Newfoundland and Labrador Benefits Commitments9
	1.7	Schedule9
2.0	Geo	blogy, Geophysics and Petrophysics9
		Geology9
	2.2	Geophysics
	2.3	Petrophysics
		2.3.1 Petrophysical Analysis
3.0	Res	servoir Engineering
	3.1	Basic Reservoir Data
		3.1.1 Reservoir Pressures and Temperatures
		3.1.2 Fluid Characterization9
		3.1.3 Reservoir Core Data9
		3.1.4 J Function Curves
		3.1.5 Special Core Analysis9
	3.2	Development Strategy9
		3.2.1 Displacement Strategy9
		3.2.2 Development Scenario
		3.2.3 Reservoir Management Plan9
	3.3	Reservoir Simulation9
		3.3.1 Simulation Model
		3.3.2 Production / Injection Constraints
		3.3.3 Production / Injection Performance
	3.4	Production Forecasts9
	3.5	Reservoir Simulation Sensitivities9
		3.5.1 140,000 bbl/d Rate Sensitivity
		3.5.2 Gasflood Sensitivity9

	3.6	Reserves Estimate9
4.0	Res	source and Reserves Estimates9
	4.1	Introduction9
	4.2	Probabilistic Resource-In-Place9
		4.2.1 Methodology
		4.2.2 Rock Volume Distribution
		4.2.3 Net to Gross Distribution
		4.2.4 Porosity Distribution9
		4.2.5 Water Saturation Distribution9
		4.2.6 Formation Volume Factor
		4.2.7 Correlations in @RISK Simulation9
	4.3	Oil Resource Estimates9
		4.3.1 Calculated Oil Resources
		4.3.2 Sensitivity Analysis
		4.3.3 Solution Gas9
	4.4	Gas Resource Estimates9
		4.4.1 Calculated Gas Resources
		4.4.2 Sensitivity Analysis
		4.4.3 Associated Liquids
	4.5	Probabilistic Reserves, North Amethyst Field9
		4.5.1 Base Recovery Factor9
	4.6	Reserve Estimates9
		4.6.1 Reserve Calculations
		4.6.2 Sensitivity Analysis
5.0	Fac	ilities Design Criteria9
	5.1	Regulations, Codes and Standards9
		5.1.1 Codes and Standards
		5.1.2 Regulatory Requirements
	5.2	Overall Design Requirements9
		5.2.1 Fatigue
		5.2.2 Design Life Requirements
		5.2.3 Cathodic Protection
		5.2.4 Production Testing
		5.2.5 Hydrogen Sulfide Potential
	5.3	Environmental Criteria9

	5.4 Quality Assurance and Quality Control)
	5.5 Certification)
	5.6 Decommissioning and Abandonment)
6.0	Alternative Modes of Development)
	6.1 Concept Selection)
	6.2 Production System Alternatives Considered)
	6.2.1 Subsea Tie-Back to SeaRose FPSO	9
	6.2.2 Subsea System to Greenfield FPSO Facility	
	6.3 Investigations into the Greenfield FPSO Alternative	
	6.3.1 FPSO Options	9
	6.3.2 Current FPSO Market Conditions	9
	6.3.3 Base Case FPSO Alternative)
	6.3.4 Key Risks Identified)
	6.4 Development Alternatives Costs)
	6.5 Schedule for Development of Alternatives	
	6.6 Preferred Development Option)
7.0	Production and Export Systems)
8.0	Construction and Installation)
	8.1 Glory Hole Construction)
	8.2 Subsea Equipment Installation)
	8.3 Drilling and Completions)
	8.4 FPSO (Topsides/Turret) Modifications)
	8.5 Northern Drill Centre Expansion)
9.0	Operations and Maintenance	•
10.0	Safety Analysis)
11.0	Development Costs)
	11.1Capital Cost Estimates	•
	11.1.1 Assumptions for Capital Cost Estimates	3
	11.1.2Capital Cost Estimates	9
	11.1.3 Operating Cost Implications	9
12.0	West White Rose Extension (WWRX))
13.0	References Cited)
14.0	Documents Used in Preparation of the Development Plan)
15.0	Acronyms)

List of Figures

Figure 1-1 White Rose Oil Field9
Figure 1-2 Location of North Amethyst Field9
Figure 1-3 Preliminary Conceptual Development Schedule for the North Amethyst Satellite Tie- Back
Figure 2-1 Grand Banks of Newfoundland Distribution of Mesozoic Basins
Figure 2-2 Major Structural Elements, Jeanne d'Arc Basin9
Figure 2-3 Location Map of the North Amethyst Field in the Greater White Rose Region
Figure 2-4 Schematic of Arial Distribution of Shoreface Sandstone and Early Moving Faults Related to the Initial Phases of Ben Nevis Fm Depostion
Figure 2-5 Structural Section Terrace to North Amethyst to SWRX Region as shown on Figure 2.3
Figure 2-6 White Rose/North Amethyst Stratigraphy Illustrating the Internal Divisions of the Ben Nevis Formation
Figure 2-7 Gross Ben Nevis Isochore Map and Cross Section9
Figure 2-8 Net Ben Nevis Sand Isochore Map and Cross Section9
Figure 2-9 Net Ben Nevis Sand in Gas Isochore Map and Cross Section9
Figure 2-10 Net Ben Nevis Sand in Oil Isochore Map and Cross Section
Figure 2-11 Ben Nevis Porosity (Gas Leg) Isochore Map9
Figure 2-12 Ben Nevis Porosity (Oil Leg) Isochore Map9
Figure 2-13 Ben Nevis Hydrocarbon Pore Volume (Gas Leg) Isochore Map9
Figure 2-14 Ben Nevis Hydrocarbon Pore Volume (Oil Leg) Isochore Map9
Figure 2-15 North Amethyst 3-D Surveys9
Figure 2-16 K-15 Synthetic9
Figure 2-17 Base Tertiary Unconformity Time Structure9
Figure 2-18 Top Ben Nevis Avalon Time Structure9
Figure 2-19 Base Ben Nevis Avalon Time Structure9
Figure 2-20 Seismic and Schematic Section through the Central Area of the North Amethyst Structure (Line runs southwest to northeast intersecting the Amethyst ridge, Terrace and SWRX blocks)
Figure 2-21 Seismic and Schematic Section through North Amethyst and the West Pool of White Rose Area (Line runs south to north intersecting K-15 and O-28Y wells)
Figure 2-22 Seismic Sections Index Map9
Figure 2-23 Base Tertiary Uconformity Depth Structure9
Figure 2-24 Top Ben Nevis Avalon Depth Structure9
Figure 2-25 Base Ben Nevis Avalon Depth Structure9

Figure 2-26 Location of the K-15 Well9
Figure 2-27 K-15 Petrophysical Summary9
Figure 2-28 F-04 Petrophysical Summary9
Figure 2-29 F-04Z Petrophysical Summary9
Figure 2-30 B-07 4 Petrophysical Summary9
Figure 2-31 A-17 Petrophysical Summary9
Figure 2-32 K-15 Porosity/Permeability Relationship9
Figure 2-33 GR Frequency Histogram for the Well K-159
Figure 2-34 Water Analysis Report for K-159
Figure 2-35 Core Lab - Hycal Comparison9
Figure 2-36 Core Porosity and Permeability at Low Pressure9
Figure 2-37 Core Porosity and Permeability at Simulated Overburden Pressure9
Figure 2-38 Core Porosity-Permeability Relationship for White Rose Wells9
Figure 2-39 Porosity-Permeability Relationship9
Figure 3-1 North Amethyst K-15 MDT Pressures9
Figure 3-2 North Amethyst K-15 Differential Liberation Oil Formation Volume Factor @ 88.1 $^{\circ}\mathrm{C9}$
Figure 3-3 North Amethyst K-15 Differential Liberation Gas-OII Ratio @ 88.1 ^o C9
Figure 3-4 North Amethyst K-15 Differential Liberation Oil Viscosity @ 88.1 °C9
Figure 3-5 North Amethyst K-15 Differential Liberation Oil Density @ 88.1 ^o C9
Figure 3-6 K-15 Sw Versus Depth: Log Data Versus Simulation Model9
Figure 3-7 Core Porosity-Permeability Cross Plot, Delineation Wells, Greater White Rose Region
Figure 3-8 North Amethyst K-15 "J" Values vs. Sw9
Figure 3-9 North Amethyst K-15 Sower End Points9
Figure 3-10 North Amethyst K-15 Kror and Krgr End Points9
Figure 3-11 North Amethyst K-15 Krwr End Points9
Figure 3-12 Proposed North Amethyst Well Locations9
Figure 3-13 Combined North Amethyst and South Avalon Base Case Production Profile9
Figure 3-14 North Amethyst and South Avalon Base Case Watercut versus Recovery Factor $\dots 9$
Figure 3-15 North Amethyst and South Avalon Base Case GOR versus Recovery Factor9
Figure 3-16 Combined North Amethyst and South Avalon Average Monthly Water Production 9
Figure 3-17 Combined North Amethyst and South Avalon Average Monthly Water Injection9
Figure 3-18 Combined North Amethyst and South Avalon Average Monthly Total Liquid Production
Figure 3-19 Combined North Amethyst and South Avalon Average Monthly Gas Plot9

Figure 3-20 North Amethyst 140,000 bopd Sensitivity Production Profile	9
Figure 3-21 North Amethyst 140,000 bopd Sensitivity Watercut versus Recovery Factor	9
Figure 3-22 North Amethyst 140,000 bopd Sensitivity GOR versus Recovery Factor	9
Figure 3-23 North Amethyst 120,000 bopd Gasflood Sensitivity Production Profile	9
Figure 3-24 North Amethyst 120,000 bopd Gasflood Sensitivity GOR versus Recovery Factor	9
Figure 4-1 Net oil thickness map of the North Amethyst Field	9
Figure 4-2 Net Gas Thickness of the North Amethyst	9
Figure 4-3 North Amethyst BRV Distributions for Oil (Left) and Gas (right) legs	9
Figure 4-4 North Amethyst N:G Distributions for Oil (Left) and Gas (Right) Legs	9
Figure 4-5 North Amethyst Porosity Distributions for Oil (Left) and Gas (Right) Legs	9
Figure 4-6 North Amethyst Sw Distributions for Oil (Left) and Gas (Right) Legs	9
Figure 4-7 North Amethyst FVF Distributions for Oil (Left) and Gas (Right) legs	9
Figure 4-8 North Amethyst Oil in Place Distribution	9
Figure 4-9 North Amethyst OOIP sensitivity analysis (from @RISK)	9
Figure 4-10 North Amethyst Solution Gas Distribution (bcf)	9
Figure 4-11 North Amethyst Gas in Place Distribution (bcf)	9
Figure 4-12 North Amethyst OGIP Sensitivity Analysis	9
Figure 4-13 North Amethyst Associated Liquids in the Gas Leg (bbls)	9
Figure 4-14 Sensitivity Analysis for North Amethyst Recoverable Oil and Gas	9
Figure 6-1 Current and Historical FPS Orders	9
Figure 6-2 AfraMax Tanker Prices - Korean New Build & Five Year Old	9
Figure 6-3 SuezMax Prices - Korean New Build & Five Year Old	9
Figure 6-4 Subsea Tie-Back to SeaRose FPSO Notional Timeline	9
Figure 6-5 Subsea System to Greenfield FPSO Notional Timeline	9
Figure 8-1 Option A North Amethyst Satellite Tie-back (Directly to FPSO)	9
Figure 8-2 Option B North Amethyst Satellite Tie-back Via Central Drill Centre	9
Figure 8-3 Option B North Amethyst Tie-back Via Southern Drill Centre	9
Figure 8-4 North Amethyst Glory Hole Layout	9

List of Tables

Table 2-1 Petrophysical Summary from the Gas Leg Intervals	. 9
Table 2-2 Petrophysical Summary for the Oil Leg Intervals	. 9
Table 2-3 Petrophysical Summary for the Water Leg Intervals	. 9
Table 2-4 Petrophysical Summary Table for the Entire Ben Nevis Interval	. 9

Table 2-5 White Rose Petrophysical Parameters 9
Table 2-6 Fluid Contacts, White Rose Region9
Table 2-7 K-15 Wireline Summary9
Table 2-8 K-15 LWD Summary9
Table 2-9 K-15 Core Summary9
Table 2-10 K-15 Core Analysis Results9
Table 2-11 Hycal and Core Lab Measurements9
Table 2-12 Values from Formation Water Testing9
Table 3-1 Fluid Contacts, White Rose Region9
Table 3-2 White Rose Fluid Gradients9
Table 3-3 North Amethyst K-15 Vertical Interference Test at 2,390 m
Table 3-4 North Amethyst K-15 Vertical Interference Test at 2,415 m
Table 3-5 North Amethyst K-15 Dual Packer Mini DST at 2,400 m
Table 3-6 North Amethyst K-15 Multi-stage Separator Fluid Oil PVT Summary9
Table 3-7 North Amethyst K-15 Differential Liberation Oil PVT Summary9
Table 3-8 North Amethyst K-15 Gas PVT9
Table 3-9 North Amethyst K-15 Water Compositional Analysis9
Table 3-10 North Amethyst K-15 PVT Correlations for Eclipse Reservoir Simulation
Table 3-11 Conventional and Sidewall Cores from the White Rose Region
Table 3-12 White Rose Region Cores (All Formations)9
Table 3-13 North Amethyst Relative Permeability End Points Correlation
Table 3-14 Combined North Amethyst and South Avalon Base Case Production Profile9
Table 3-15 Comparison of Simulation Sensitivity Results 9
Table 4-1 Oil and Gas in Place Estimates, North Amethyst9
Table 4-2 Bulk Rock Volume (BRV) ranges for North Amethyst9
Table 6-1 New Build vs. Tanker Conversion9
Table 6-2 Incremental Capital and Operating Cost9

List of Appendices

- Appendix A Vertical Interference Test and Mini-DST Interpretation
- Appendix B North Amethyst Reservoir Fluid Study

Executive Summary

Husky Oil Operations Limited (Husky) and its partner Petro-Canada propose to undertake development of the North Amethyst field in the Jeanne d'Arc Basin on the Grand Banks within the Significant Discovery Licences (SDL) 1024 and 1044, Production Licence (PL) 1006 and Exploration Licence (EL) 1045.

Husky identified two alternatives for development of the North Amethyst field: a subsea tie-back system to the existing *SeaRose FPSO* facility or a subsea development to a new steel ship-shaped FPSO facility. The investigation of the alternative production systems concluded that the preferred option for the North Amethyst field development should be based on a subsea tie-back system to the *SeaRose*. The base production profile for the White Rose Development predicts that the *SeaRose* will reach the end of plateau in 2008. As spare production capacity becomes available on the *SeaRose*, a subsea tie-back will make use of this future capacity, thereby maximizing utilization of the existing infrastructure and lowering the threshold for small field developments. This option is the more viable economic alternative for North Amethyst.

The North Amethyst Satellite Tie-back will consist of construction of a new glory hole with a capacity of up to sixteen wells. The tie-back is expected to require from seven to ten wells consisting of four production and three to six water injection wells. Further field optimization and planning will determine the final well count.

The flow line routing for the tie-back is subject to FEED engineering, flow assurance studies and further economic evaluation. The results of these studies will determine the exact routing from the North Amethyst glory hole to the *SeaRose*. The field will, therefore, either be tied back from the glory hole directly via new flow lines and new dedicated riser systems (Option A) or via new flow lines to the existing subsea infrastructure (Option B).

North Amethyst will be produced from the Ben Nevis Formation at approximately 600 m shallower then the South Avalon Pool. The North Amethyst field is separated from the Terrace by the West Terrace Fault which occurred after the deposition of the Ben Nevis sands. The difference in the overall stratigraphic thickness between the Terrace and North Amethyst is almost entirely seen within the Nautilus shales as the Ben Nevis reservoir is similar in thickness to South Avalon Pool wells. The oil column is overlain by a gas cap for which the properties are very similar to that of South Avalon Pool. The higher porosity and permeability values of North Amethyst are largely attributed to less compaction. Secondary recovery is planned through water injection support.

The glory hole construction and subsea installation activities associated with developing the tie-back will be similar to those employed for the existing White Rose Development.

The total predicted recoverable oil from North Amethyst is 70 mm bbls on a P50 basis (estimated as of August 2007). The cost of the North Amethyst Satellite Tie-back is estimated to be approximately \$1.3 billion (CDN) for either option discussed in this Plan.

Required modifications to the *SeaRose* in support the North Amethyst Satellite Tie-Back are detailed in *White Rose Development Plan Amendment SeaRose FPSO Modifications* (Husky Document No. SR-SRT-RP-0003), submitted concurrently with this document. A Benefits Plan (Husky Document No. SR-SRT-RP-0006).and a Concept Safety Analysis (Husky Document No. SR-HSE-RP-0003) have been submitted to the C-NLOPB as separate reports.

As further information becomes available, plans will be modified and refined. Submission of this document does not commit Husky to proceed with the tie-back. It should also be noted that this potential tie-back is currently in the preliminary front end engineering (FEED) phase and has not yet been sanctioned by the White Rose partners.

1.0 **Project Overview**

1.1 Purpose and Scope of the Project

Husky Oil Operations Limited (Husky), as the Operator and in joint-venture with Petro-Canada (PetroCan), submitted a Development Application (DA) for the White Rose Development to the Canada-Newfoundland and Labrador Offshore Petroleum Board (C-NLOPB) in January 2001. This DA was prepared pursuant to the <u>Canada-Newfoundland Atlantic Accord</u> <u>Implementation Act</u> and the <u>Canada-Newfoundland and Labrador Atlantic Accord</u> <u>Implementation Newfoundland and Labrador Act</u>. The C-NLOPB approved the White Rose DA in December 2001. The Production License PL 1006 applies to the existing White Rose Development.

Oil production from the *SeaRose* Floating, Production, Storage and Offloading (*FPSO*) is predicted to begin to decline in 2008. As spare production capacity becomes available in *SeaRose*, a subsea tie-back will make use of this future capacity, thereby maximizing utilization of the existing infrastructure and lowering the threshold for small field developments. To this end, in September 2006 an Amendment to the White Rose Development Plan was submitted to the C-NLOPB. The Amendment outlined plans for development of the South White Rose Extension (SWRX) area located approximately four km south of the current Southern Drill Centre (SDC). This application is still under review by the C-NLOPB. Development of the North Amethyst Satellite Tie-back will also provide additional production to fill available capacity on the *SeaRose*.

This document is being submitted to outline a proposed tie-back of a satellite field to the *SeaRose*. Husky and its co-venturer Petro-Canada propose to undertake development of the North Amethyst field in the Jeanne d'Arc Basin on the Grand Banks within the Significant Discovery Licences (SDL) 1024 and 1044, Production Licence (PL) 1006 and Exploration Licence (EL) 1045. The tie-back will consist of construction of a new glory hole with a capacity of up to sixteen wells. The North Amethyst Satellite Tie-back is expected to require from seven to ten wells consisting of four production and three to six water injection wells. Further field optimization and planning will determine the final well count.

Husky identified two options for development of the North Amethyst field: a subsea tie-back system to the existing *SeaRose* FPSO facility or a subsea system to a new steel ship-shaped FPSO facility. Husky investigated options for a new build FPSO versus a tanker conversion and compared key risks, schedule impacts and development costs for each alternative. The investigation concluded that the North Amethyst field should be developed by subsea tie-back to the *SeaRose*. The base production profile for the White Rose Development predicts that the *SeaRose* will reach the end of plateau in 2008. As spare production capacity becomes available on the *SeaRose*, a subsea tie-back will make use of this future capacity, thereby

maximizing utilization of the existing infrastructure and lowering the threshold for small field developments. This option is the more viable economic alternative for North Amethyst.

The flow line routing for the tie-back is subject to FEED engineering, flow assurance studies, and further economic evaluation. The results of these studies will determine the exact routing from the North Amethyst glory hole to the *SeaRose*. The field will, therefore, either be tied back from the glory hole directly via new flow lines and new dedicated riser systems (Option A) or via new flow lines to the existing subsea infrastructure (Option B).

Should Option A tie-back be selected, modifications to the *SeaRose* turret, buoy and topsides to accommodate the new flowlines and umbilical from the North Amethyst Drill Centre (NADC) will be required. The details of the *SeaRose* modifications are provided in the White Rose Development Plan Amendment (Husky Document No. SR-SRT-RP-0003) submitted concurrently with this document.

As further information becomes available, plans will be modified and refined. Submission of this document does not commit Husky to proceed with the tie-back. It should also be noted that this potential tie-back is currently in the preliminary FEED phase and has not yet been sanctioned by the White Rose partners.

The White Rose oil field is located on the Grand Banks, approximately 350 km east of the Island of Newfoundland on the eastern edge of the Jeanne d'Arc Basin (Figure 1-1).

Figure 1-1 White Rose Oil Field

The White Rose SDL consists of both oil and gas fields or pools, including the South Avalon Pool, the North Avalon Pool, and the West Avalon Pool. The main oil reservoir at White Rose is the Ben Nevis - Avalon Formation sandstone.

The White Rose Development utilizes the *SeaRose FPSO*, an FPSO facility with ice avoidance capacity (disconnectable turret) and subsea wells. Crude oil is transported to market by shuttle tankers. Oil production from the White Rose field commenced in November 2005.

Subsea installations for the initial development scope (South Avalon) consisted of a potential of 21 subsea wells. As of July 2007, 17 wells have been drilled and completed (nine water injection, one gas injection, and seven oil producers). The base plan is for 18 wells including another gas injection well. The wells are manifolded and connected to flowlines and flexible risers which terminate at the FPSO.

The location of the North Amethyst field is shown in Figure 1-2.

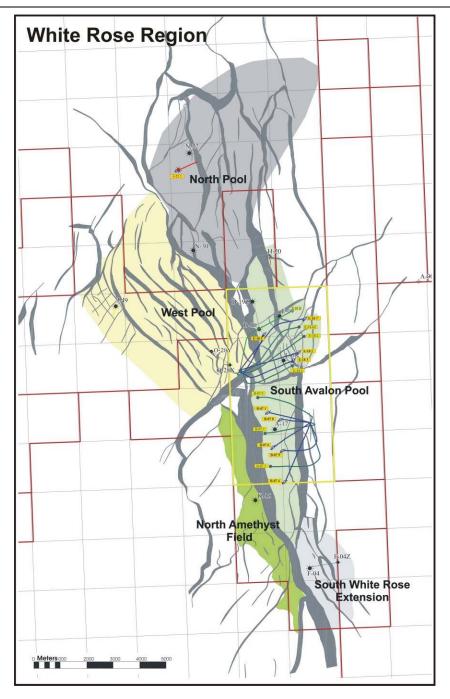


Figure 1-2 Location of North Amethyst Field

1.2 History of the Field Discovery

In 2006 the North Amethyst K-15 exploration well, to the southwest of the White Rose field, was drilled on White Rose Significant Discovery Licence 1044 to a depth of 2,566 metres.

1.3 Co-Venturers and Their Respective Interests

Husky is developing the North Amethyst Satellite Tie-back with its co-venturer Petro-Canada. The average interests of the co-venture parties in the project are:

- Husky Oil Operations Ltd. 72.5 percent
- Petro-Canada 27.5 percent

1.4 Land Ownership

The North Amethyst field is situated on Significant Discovery Licences (SDL) 1024 and 1044, Production Licence (PL) 1006 and Exploration Licence (EL) 1045. Husky and its co-venturer Petro-Canada hold the same working interest in the three licences. Husky has submitted a Commercial Discovery Declaration for North Amethyst which will be followed by a Production Licence to include the portion of North Amethyst on EL 1045.

1.5 Management

Husky, as the White Rose Field Operator, will manage the development of the North Amethyst Satellite Tie-back and subsequent operations. The Operator's authority, role, responsibility and reporting requirements are outlined in the White Rose Exploration, Appraisal, Development and Operating Agreement that is already in place.

1.6 Canada-Newfoundland and Labrador Benefits Commitments

As with the core White Rose Development, Husky's *Canada-Newfoundland and Labrador Benefits Guidelines* will continue as a governing document to guide how Husky and its contractors conduct business. A Benefits Plan for the North Amethyst Satellite Tie-back has been prepared and submitted to the C-NLOPB as a separate report (Husky Document No. SR-SRT-RP-0006).

1.7 Schedule

A high level preliminary conceptual schedule for development of the North Amethyst Satellite Tie-back is provided in Figure 1-3.

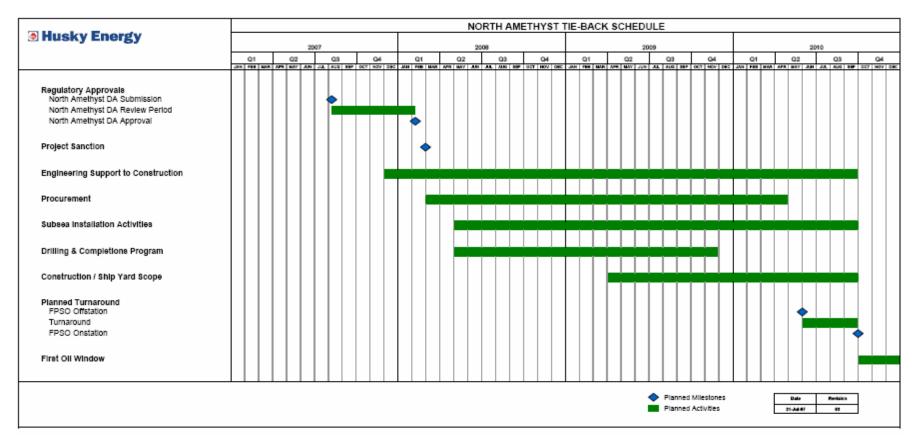



Figure 1-3 Preliminary Conceptual Development Schedule for the North Amethyst Satellite Tie-Back

2.0 Geology, Geophysics and Petrophysics

The North Amethyst field is located on the eastern margin of the Jeanne d'Arc Basin. The Jeanne d'Arc basin is one of a series of interconnected sedimentary basins which were formed on the Grand Banks of Newfoundland as a result of the Early Mesozoic break-up of the Pangea continental mass and the birth of the Atlantic Ocean (Figure 2-1).

The Jeanne d'Arc basin is a fault-bounded basin trending north-north-west to southsouth-east encompassing an area of roughly 10,500 km² (Figure 2-2). The North Amethyst field, on the eastern margin of the basin, lies in close proximity to the Voyager Fault, which forms the southeastern edge of the basin.

The current geologic interpretation used for geological modeling is an updated version of that presented in the DA for the White Rose oilfield submitted in 2001. At the time of the White Rose submission there were seven delineation wells in the greater White Rose region that included the South, West, and North White Rose sub-regions. The updated model currently includes all wells within the core White Rose development region as well as the F-04 and F-04Z wells drilled in the SWRX region in 2003 (Figure 2-3). This brings the total number of wells in the region to 31. The F-04 and F-04Z penetrations of the reservoir section in the SWRX region confirmed the presence and quality of the Ben Nevis reservoir to the south of the White Rose core development, further delineating the shoreface trend. The K-15 well was drilled into the North Amethyst structure confirming the presence and quality of the reservoir to the west of the main producing pool (Figure 2-3).

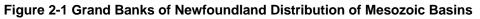


Figure 2-2 Major Structural Elements, Jeanne d'Arc Basin

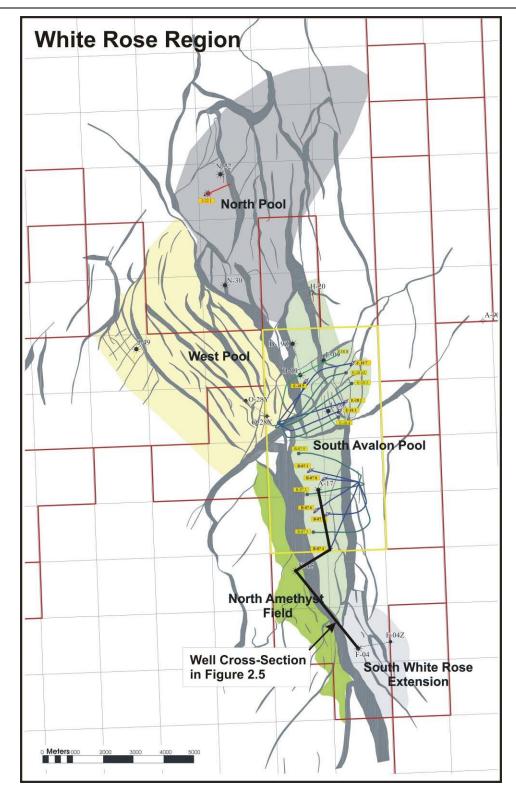


Figure 2-3 Location Map of the North Amethyst Field in the Greater White Rose Region

Development drilling has provided six vertical/deviated penetrations of the Ben Nevis reservoir (J-22 1, E-18 1, B-07 1, B-07 4, B-07 6, and B-07 8) and 11 horizontal penetrations (E-18 2, E-18 3, E-18 4, E-18 5, E-18 6, E-18 7, E-18 8, B-07 2, B-07 3, B-07 5 and B-07 9). Although information from these wells has provided a concentrated data set for modeling purposes, no unexpected results were encountered. The same is true for the delineation wells B-19, B-19Z and O-28Y. The O-28X well, drilled in the summer of 2006, encountered a fault which was not previously mapped. This fault has now been incorporated into the geological model. As a result, no material changes have been made to the depositional framework for the Ben Nevis Formation as proposed in 2001. Furthermore, no material changes have been made to the static geological model as provided in the White Rose DA. The K-15 well encountered Ben Nevis sandstone approximately 600 m shallower then the main producing White Rose field. The higher porosity and permeability values evident in the K-15 well were largely attributed to less compaction. These values are incorporated into the geological model.

The results of the F-04 and F-04Z wells have been tied to seismic data, and F-04 was used in developing the velocity model for depth conversion. Aside from these minor shifts, the geophysical interpretation has not materially changed since the original White Rose DA submission. The K-15 well came in very close to prognosis, again confirming the validity of the depth conversion in the greater White Rose region.

However, a note of clarification is required regarding the naming convention used in the White Rose DA. The reservoir section was termed the 'Avalon' in the 2001 submission. It is now believed the reservoir section lies upon the mid-Aptian unconformity, is middle Aptian-Albian in age, and is an overall fining-upward package within a transgressive systems tract, and thus is likely to be the Ben Nevis Formation. Reasons for this are twofold. First, biostratigraphic evidence suggests that the reservoir package at White Rose rests unconformably upon Barremian to early Aptian-aged strata (zonations as in Ainsworth et al.). Second, seismic defines Jurassic through lower Cretaceous subcrop edges, indicating that the mid-Aptian unconformity at the base of the reservoir section at White Rose correlates favorably to the back-stepping transgressive Ben Nevis Formation. Note that with the two naming conventions spanning the work done in this compilation, Ben Nevis (BN) and Ben Nevis-Avalon (BNA) are used interchangeably throughout this report.

2.1 Geology

Current geological understanding places the Ben Nevis reservoir in North Amethyst in a region of shallow marine lower shoreface deposition trending southwest-northeast (Figure 2-4). This has been confirmed by the additional well penetrations drilled since the White Rose DA submission. Internal divisions of the Ben Nevis formation represent seven parasequence sets: the BN_ramp, BN_Shell_Cmt, BN_1, BN_2, BN_3, BN_4,

and BN_5 from base to top respectively (Figure 2-5). These units correspond with coarsening upwards cycles evident in distal wells (such as H-20), but lose resolution where the net-to-gross ratio is high, and sand-on-sand intra-formational contacts exist. In these regions, including North Amethyst, the internal divisions are highly interpretational, but can be correlated through the area nonetheless.

Figure 2-6 illustrates the sequence stratigraphic framework of the Ben Nevis Formation in the North Amethyst field. Armentrout defines the parasequence set as 4th order cycles that generally are 6 m to 250 m thick, 50 km² to 50,000 km² in aerial extent, and have a depositional duration of 0.1 to 0.5 Ma. Based on the assumption that these types of cycles apply to the Ben Nevis at White Rose, then the main correlation surfaces used throughout the field (in red on the cross section A-A' in Figure 2-5) are marking 4th order flooding surfaces bounding the parasequence sets outlined in Figure 2-6. The highly interpretive small scale cycles defined by the grey correlation lines in Figure 2-6 are then representative of 5th order flooding surfaces that frame parasequences. These finer scale surfaces are used only to assist in defining the surfaces associated with the parasequence set division. This maintains consistency in correlation and improves the static modeling framework, and has been incorporated into the updated reservoir model for the SWRX area.

The North Amethyst field is situated on a large rotated fault block adjacent to the Terrace portion (A-17 block) of the White Rose South Avalon Pool. The principal reservoir is the Lower Cretaceous Ben Nevis Formation, which consists of predominantly very fine-grained quartzose sandstones deposited in a shallow marine shoreface setting. The North Amethyst field is separated from the Terrace by the West Terrace Fault. This fault occurred after the deposition of the Ben Nevis sands and exhibits around 600 m of throw. The difference in the overall stratigraphic thickness between the Terrace and North Amethyst is almost entirely seen within the Nautilus shales as the Ben Nevis reservoir is similar in thickness to South Avalon Pool wells (Figure 2-5).

The gross sandstone thickness exceeds 200 meters while the net to gross ratio exceeds 90% in some areas of the field.

As presented in the White Rose DA, three main facies associations (FA) and several diagenetic components are identified at White Rose and these extend into the North Amethyst region:

1. FA1: Lower Shoreface Storm Deposits. Consisting of well sorted very fine grained sandstone, this FA is the main reservoir rock type in the region. Facies encountered within this grouping are low-angle (hummocky to swaley) laminated sandstone, massive sandstone, and parallel laminated sandstone. Varying amounts of shell bioclastic and sideritised shale ripup clasts are present as lags along basal scour contacts.

- 2. FA2: Lower Shoreface Fairweather Deposits. These intervals consist of heavily bioturbated siltsone to silty-sandstone to sandstone. Primary sedimentary structures are rarely preserved.
- 2. FA3: Marine Deposits. Representing the distal component of White Rose region deposition, the facies types for this group are laminated and massive silty-shale to shale, with some minor bioturbated intervals.
- a. Diagenetic Components. Although not representative of a primary depositional feature, due to the abundance of secondary components in the reservoir rock, these have been separated into three groups. Calcite cement is dominant within the Ben Nevis Formation (Fm) and consists of two types. Calcite nodules are defined by their round edges as seen in both core and on image logs and likely have poor lateral continuity. Calcite nodules can also be concentrated along shell lag intervals, appearing more lenticular and usually exhibiting convolute edges. Although more continuous than singular nodules, these occurrences are not likely to form intra-reservoir barriers. A third type, siderite nodules, are not significant in terms of reservoir proportion but are locally present, commonly within mud-lined trace fossils. These components are not as prevalent within the North Amethyst field due largely to the shallower burial history but are still recognized.

These facies associations have been incorporated within the static reservoir model and the resultant dynamic model used in simulation.

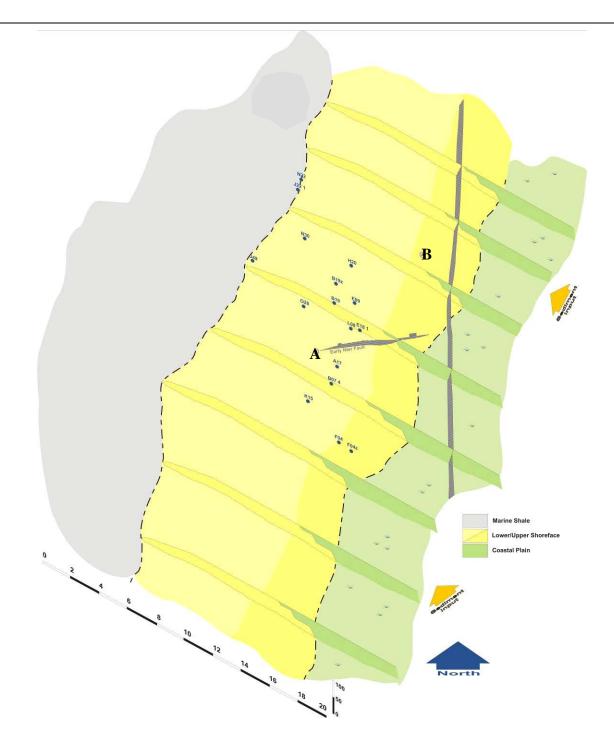
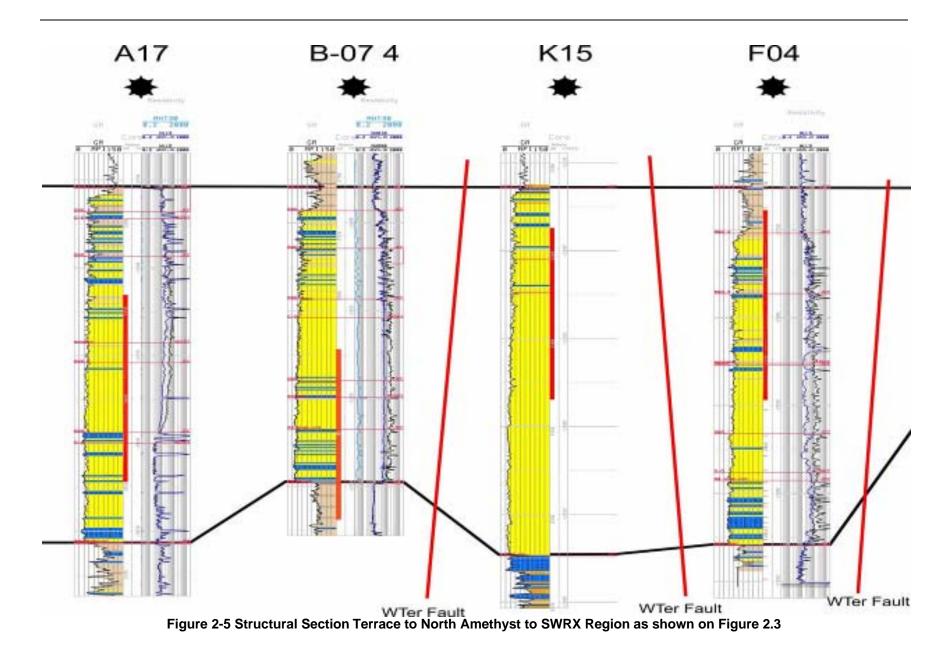
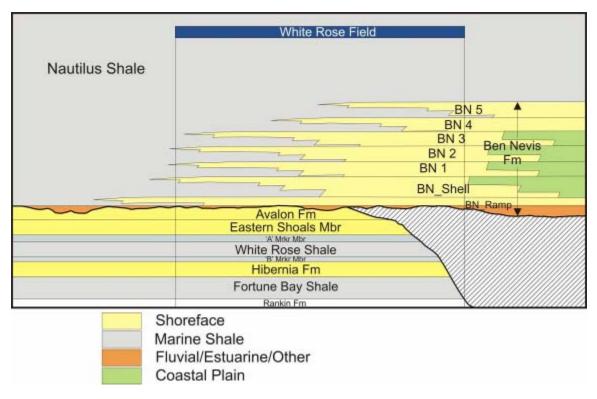




Figure 2-4 Schematic of Arial Distribution of Shoreface Sandstone and Early Moving Faults Related to the Initial Phases of Ben Nevis Fm Depositon

(Note development wells not displayed). A-Early NTer fault movement resulting in increased accommodation space and thicker Ben Nevis Fm relative to the southern field extents. B-increased region of accommodation east of the H-20 well.

Figure 2-6 White Rose/North Amethyst Stratigraphy Illustrating the Internal Divisions of the Ben Nevis Formation

Time structure and depth structure maps are discussed in Section 2.2, Geophysics. Figures 2-7 to 2-14 illustrate the sand, reservoir, hydrocarbon and pore volume thicknesses as indicated.

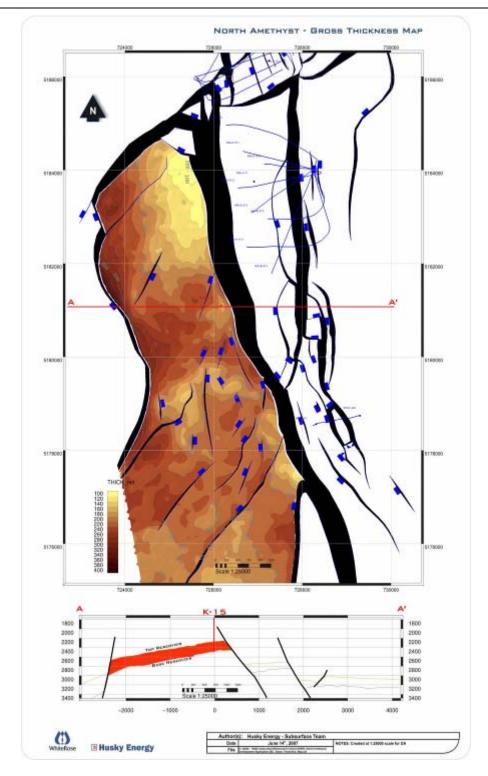


Figure 2-7 Gross Ben Nevis Isochore Map and Cross Section

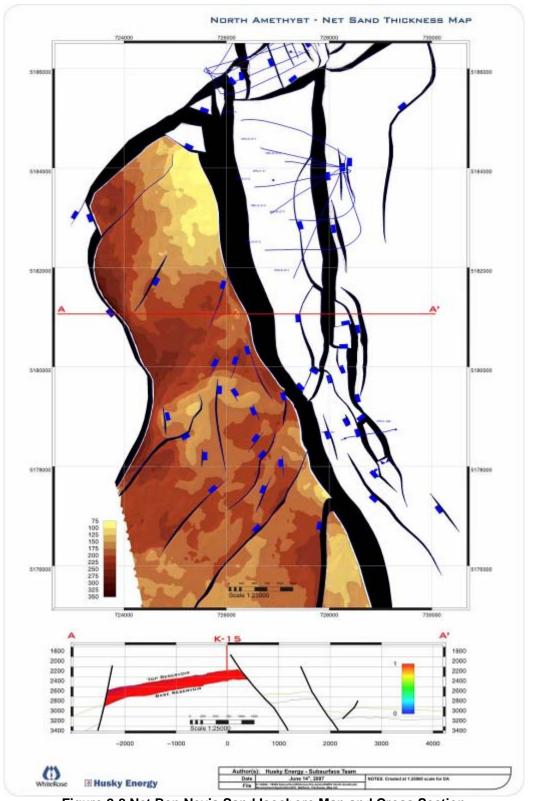


Figure 2-8 Net Ben Nevis Sand Isochore Map and Cross Section

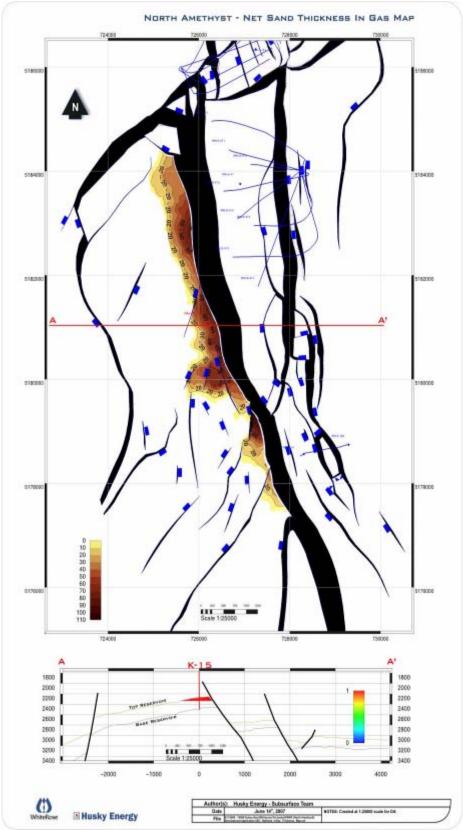


Figure 2-9 Net Ben Nevis Sand in Gas Isochore Map and Cross Section

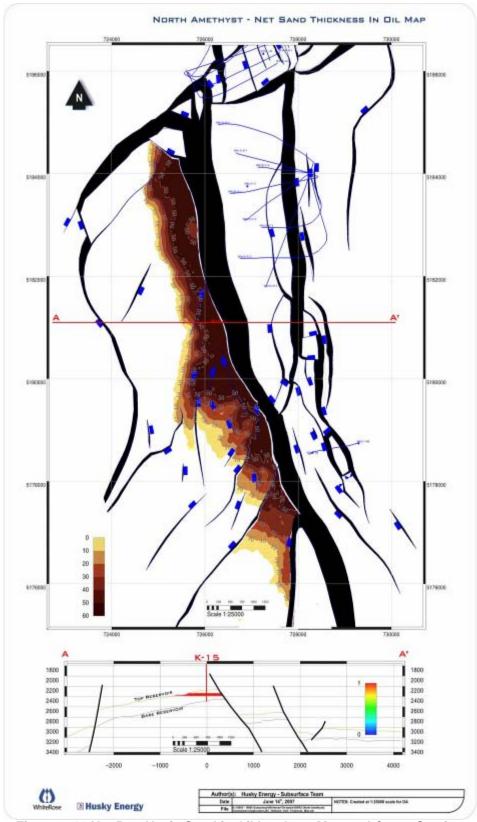


Figure 2-10 Net Ben Nevis Sand in Oil Isochore Map and Cross Section

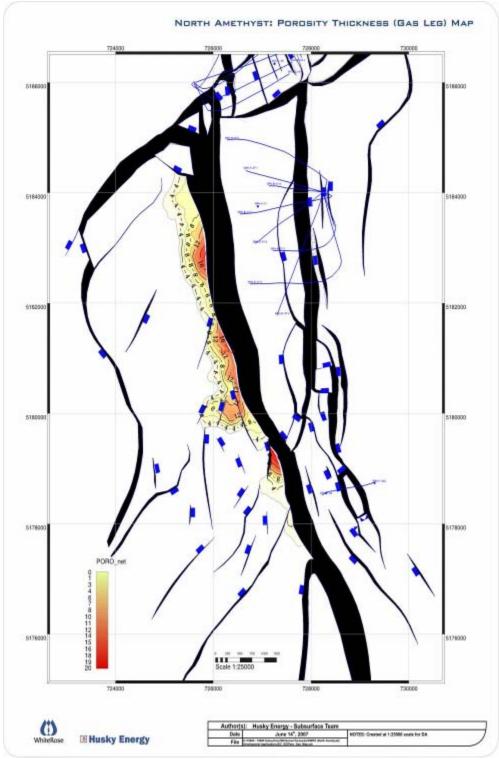


Figure 2-11 Ben Nevis Porosity (Gas Leg) Isochore Map

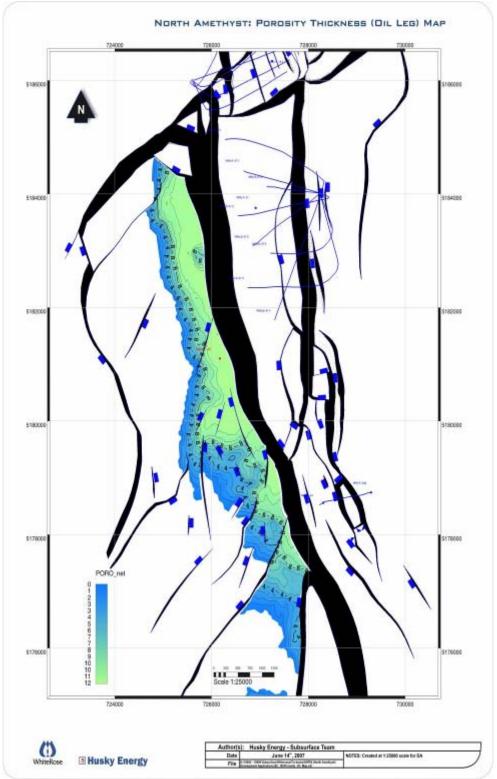


Figure 2-12 Ben Nevis Porosity (Oil Leg) Isochore Map

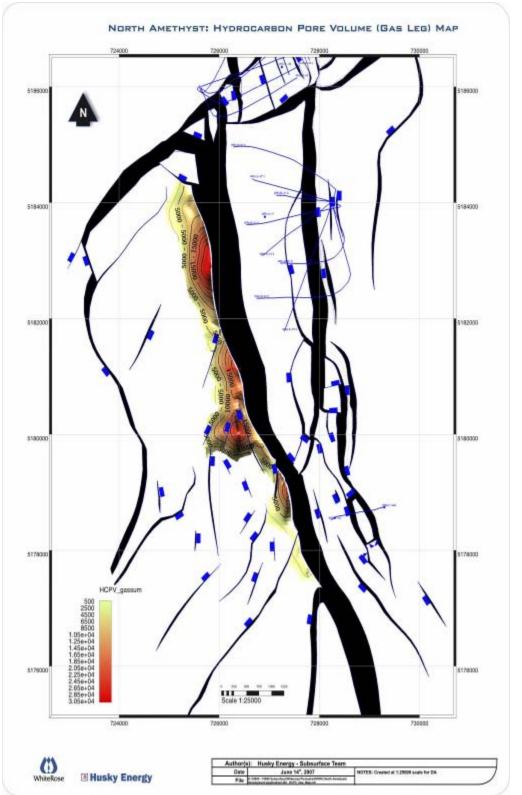


Figure 2-13 Ben Nevis Hydrocarbon Pore Volume (Gas Leg) Isochore Map

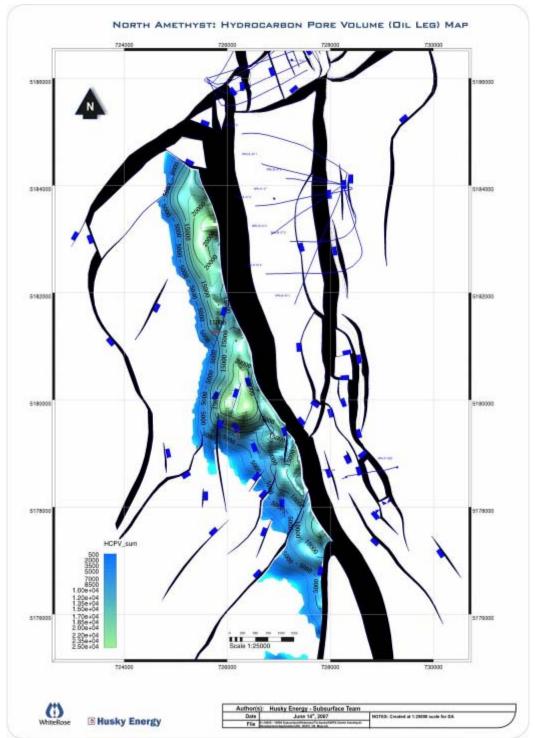


Figure 2-14 Ben Nevis Hydrocarbon Pore Volume (Oil Leg) Isochore Map

2.2 Geophysics

This Section describes the seismic data and geophysical mapping specific to the North Amethyst field.

Seismic Data Acquisition

North Amethyst is covered by three seismic surveys (PGS 97 3-D, Breton, and GSI) (Figure 2-15). These surveys were completed for different purposes, in different years, and with different field geometrical configurations.

The PGS 97 3-D survey was shot during June-July 1997 and covers a hexagonal shaped area of 311 km², comprised mostly of the known White Rose hydrocarbon accumulations. The seismic ship R.V. Ramform Explorer, operated by PGS Exploration AS, conducted the 3-D geophysical survey on behalf of Husky and its co-venturers. A total of 13,328.4 line km of seismic reflection profiles were collected in 40 variable length swaths, recorded in an east-west direction. The most extended lines were 25 km long while the shortest were 14 km long (Boyd Exploration 1997).

The PGS 97 data was acquired with a dual source/eight streamer configuration. Streamer length was 4,025 m and separation between streamers was 100 m resulting in a 4,025 m by 700 m acquisition footprint. A number of 8 X 162 channels were recorded with a 2 m/s sampling rate and 7 s recording length. The two/three air gun arrays were distanced at 50 m and fired in a flip-flop manner every 25 m. The resulting line spacing was 25 m and data is 40-fold. The signature of the tuned air gun array was excellent and stable throughout the program. Accurate Wide Area Differential Global Positioning System (DGPS) primary positioning was used throughout, in combination with land-based STARFIX positioning (better than 2 m accuracy).

The Breton 3-D survey purchased by Husky and others in 1999 was used for seismic interpretation over a 46 km² area located in the southeastern portion of the White Rose Complex. This survey was a group shoot acquired by Esso and its partners in 1990 with the M.V. Geco Searcher and was initially used as a work commitment for an Exploration License awarded to Esso, Chevron, Shell and Talisman. The Breton survey was acquired with dual streamer/dual source configuration. Streamer length was 2,800 m, streamer separation was 150 m, source separation was 75 m and the shot interval alternating was 18.75 m. This field layout resulted in a line spacing of 37.5 m and trace spacing of 12.5 m.

Husky purchased the GSI 85 seismic survey for regional interpretation of the eastern Jeanne d'Arc Basin and early delineation of the White Rose Complex. This was an exploration three-dimensional survey (Reconnaissance 3-D) acquired with single source/single streamer configuration and a 200 m line spacing. The cable had 120

hydrophone groups and its length was 3,024 m, resulting in 60-fold data. There is a total overlap between the GSI Reconnaissance 3-D and the PGS 97 3-D survey and partial overlap with the Breton survey. Due to its poorer quality, the GSI survey was used only for interpretation of a small 78 km² area situated outside the newer surveys. Further information regarding the acquisition parameters of the GSI 85 program resides with the C-NLOPB office in St. John's.

Seismic Data Processing

Three different seismic surveys cover the White Rose area: 1) PGS 1997; 2) Breton 1990 and 3) GSI 1985 (Figure 2-15). The three surveys were processed together in 2000 to get a complete picture over the White Rose field and this cube was used for the North Amethyst interpretation.

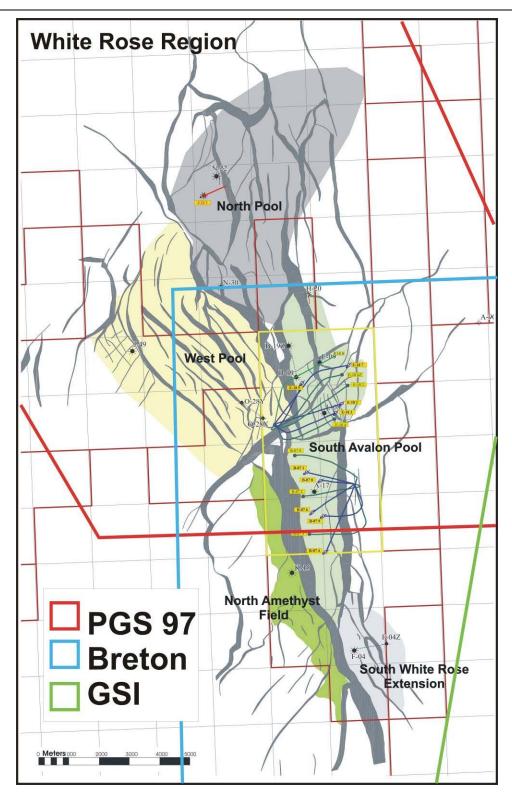


Figure 2-15 North Amethyst 3-D Surveys

Seismic Interpretation - Synthetic Ties

The main wells used to correlate the seismic markers in North Amethyst were the Fortune G-57 and North Amethyst K-15. An excellent fit can be seen between the synthetics generated from the sonic and density logs and the seismic data. An example of the individual well synthetic is provided in Figure 2-16

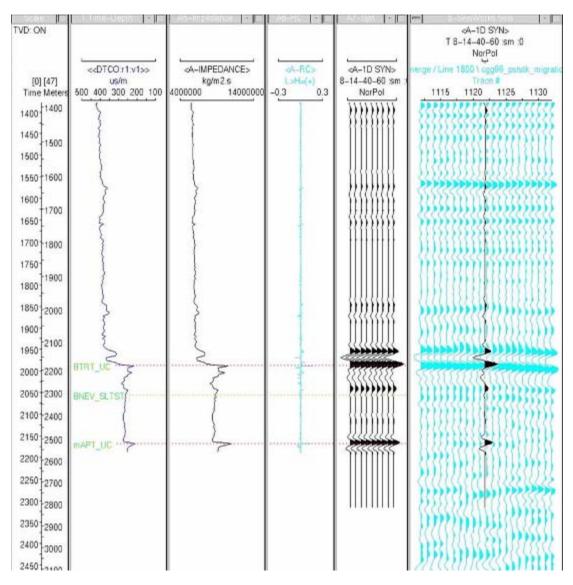


Figure 2-16 K-15 Synthetic

Seismic Markers

A large number of wells from the White Rose area provided correlation points with the stratigraphy over the North Amethyst area. The ties between the synthetic seismograms, corridor stack VSPs, and marine seismic data are generally good. Most

data correlation problems occur due to the low impedance contrast between the BNA sandstone reservoir and surrounding rocks and the complexity of faulting. Mapping the top and the bottom of the BNA Formation is generally a challenge.

Data quality over the area is good to moderate and faults are less complex compared to other areas around the White Rose field.

Seismic interpretation was performed on all available lines and crosslines (25 m by 25 m line grid) and confirmed with arbitrary lines, animation files, time slices and continuity slices. The interpretation was completed using a Sun operating system and Landmark Seisworks. Three displays on screen or hardcopy: 1) seismic line or time slice; 2) time-structure map; and 3) trend continuity maps were used to interactively interpret the area.

Three seismic markers were correlated and mapped over the entire area: the Base Tertiary Unconformity (Figure 2-17), the Top BNA (Figures 2-18) and the mApt Unconformity (Base BNA) (Figure 2-19).

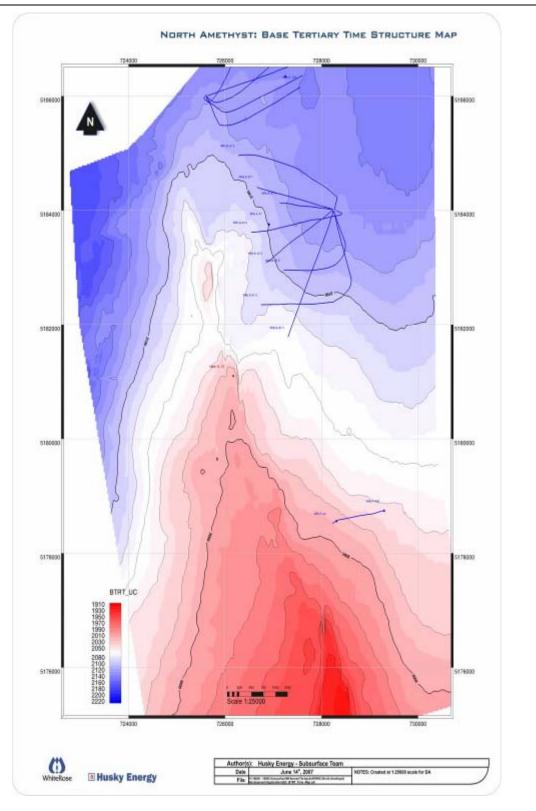


Figure 2-17 Base Tertiary Unconformity Time Structure

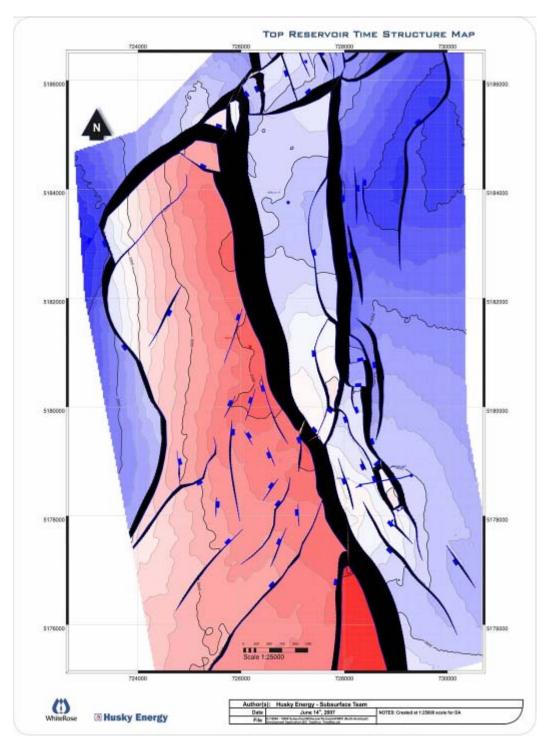


Figure 2-18 Top Ben Nevis Avalon Time Structure

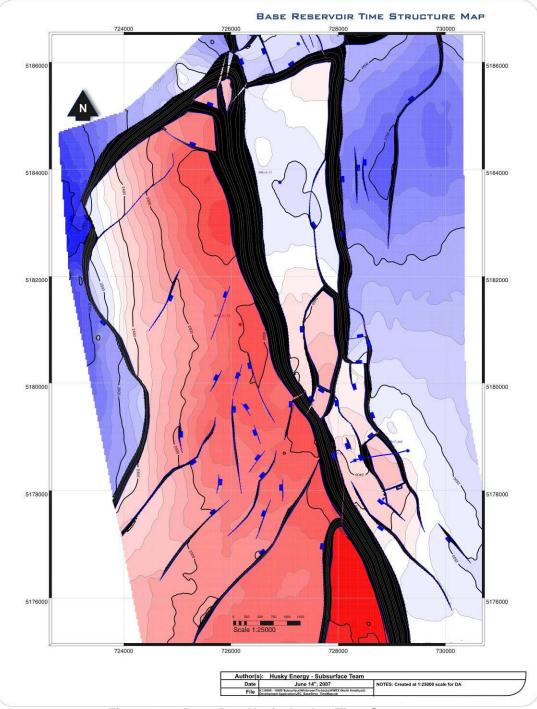


Figure 2-19 Base Ben Nevis Avalon Time Structure

The Base Tertiary Unconformity is generally a consistent, strong amplitude reflector caused by a high positive impedance contrast between the Mesozoic and overlying Tertiary layers. The Base Tertiary is defined as a maximum value of a peak on seismic displays. The quality of the reflector deteriorates in areas affected by faulting or channel incision where an amplitude decrease is observed and the marker may change polarity.

The Top BNA Formation reflector is a low amplitude peak that can be mapped over the entire North Amethyst area. The marker is affected by multiples. In highly faulted areas, the marker is low quality and very hard to follow (Figures 2-20 and 2-21).

The mApt unconformity (Base of BNA Formation) is, in general, a medium to high reflectivity peak, but it may change to low amplitude or even change polarity as it truncates layers of different age and composition (Figures 2-20 and 2-21).

Two interpreted, migrated seismic sections are included, to illustrate the main structural elements and tie the wells in the area (Figure 2-20 and 2-21). Their locations are shown on the seismic sections index map (Figure 2-22).

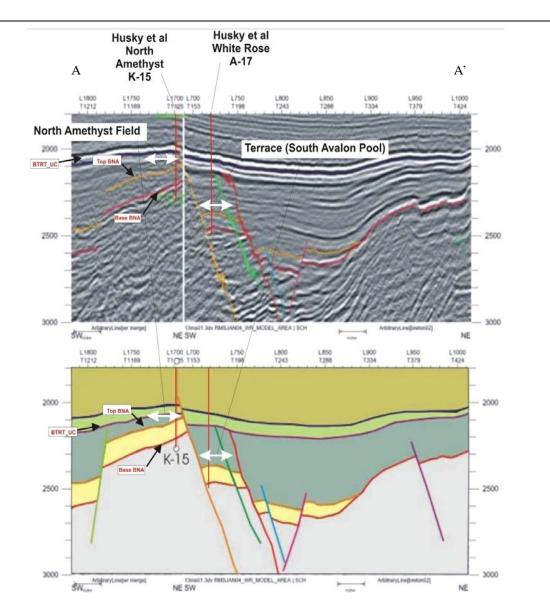
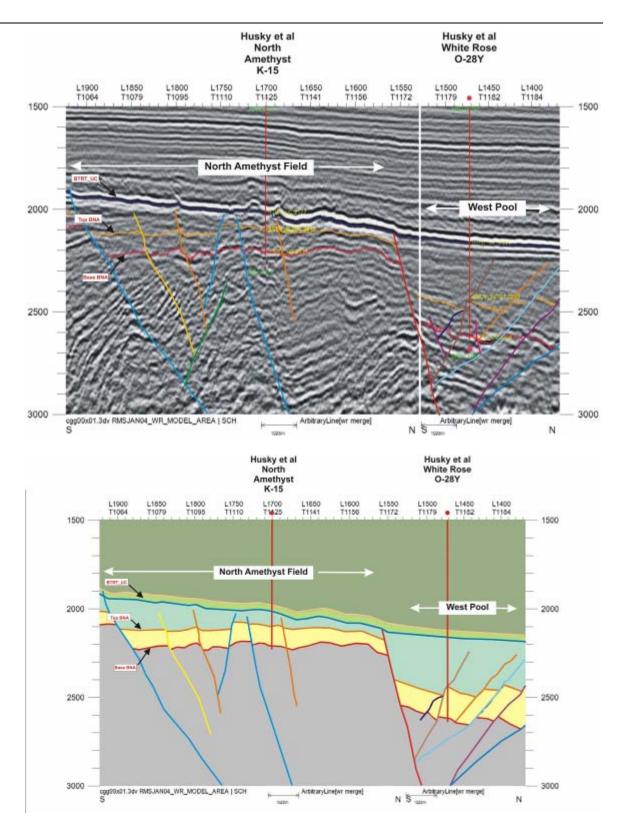
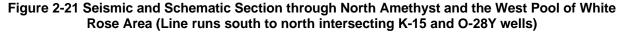




Figure 2-20 Seismic and Schematic Section through the Central Area of the North Amethyst Structure (Line runs southwest to northeast intersecting the Amethyst ridge, Terrace and SWRX blocks)

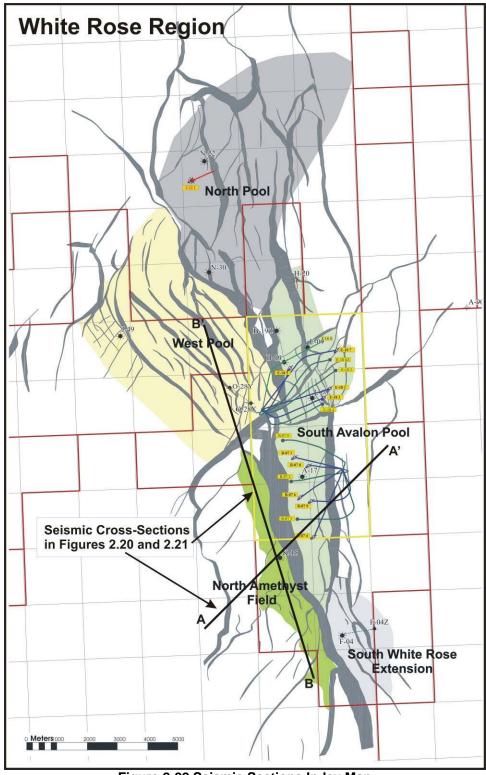


Figure 2-22 Seismic Sections Index Map

Structural Maps

The time-structure maps illustrated above (Figures 2-17, 2-18 and 2-19, Base Tertiary Unconformity time-structure, Top BNA Formation time-structure and mApt Unconformity (Base BNA) time-structure) were subjected to the depth conversion method described below to create the following depth structural maps (Figures 2-23, 2-24 and 2-25, Base Tertiary Unconformity depth-structure, Top BNA Formation depth-structure and mApt Unconformity (Base BNA) depth-structure).

Time-to-Depth Conversion

The Vo,K method, where Vo is the 'instantaneous' velocity and K is the gradient, was used for the White Rose regional depth conversion.

Data from sixteen (16) wells in the region were compiled, inspected, corrected, conditioned and analyzed for Vo,K parameters.

A two layer model was developed based on the geology, presence of seismically resolvable unconformities, and the corresponding internally consistent velocity responses. Tertiary and Cretaceous sedimentary zones were each considered as macro-layers. The Tertiary sediments consist of mostly mudstones and shales of the Banquereau Formation. The Cretaceous layer, defined by the Base of Tertiary Unconformity and the mid–Aptian Unconformity, is structurally complex with evidence of extensional faulting during deposition of the Nautilus shales and Ben Nevis-Avalon reservoir sandstone. It is composed of mainly thin Dawson Canyon shales and limestones and a thick Nautilus Formation shale overlying the reservoir.

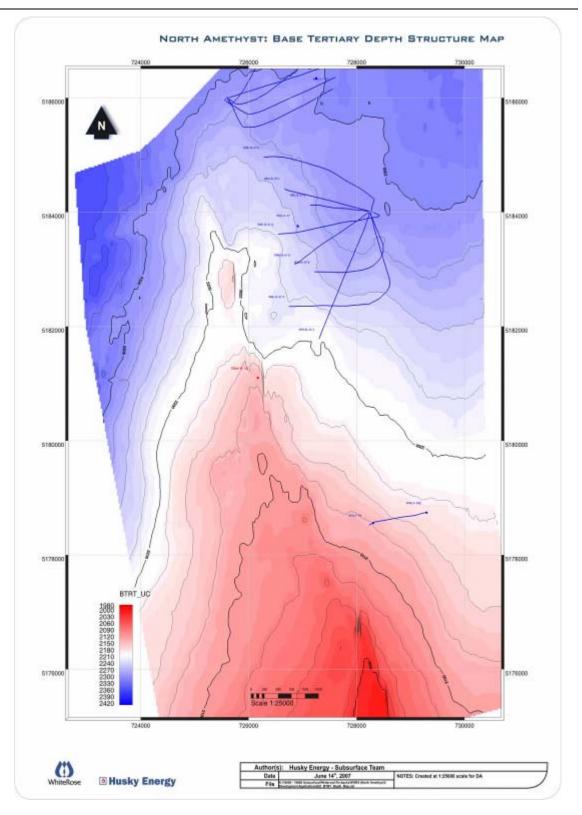


Figure 2-23 Base Tertiary Uconformity Depth Structure

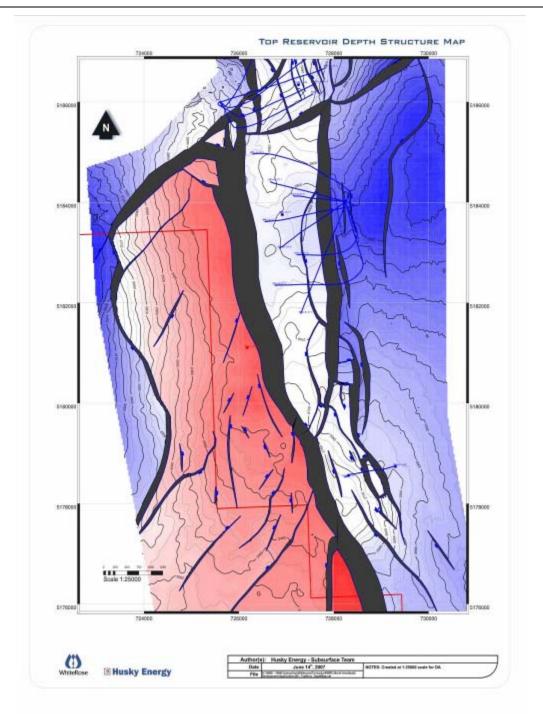


Figure 2-24 Top Ben Nevis Avalon Depth Structure

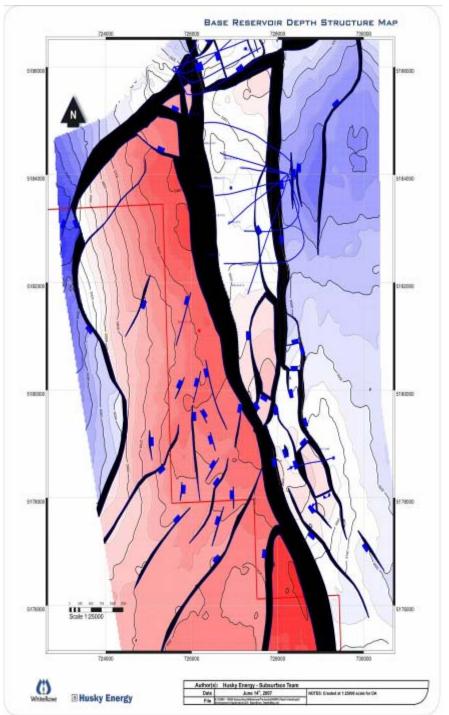


Figure 2-25 Base Ben Nevis Avalon Depth Structure

Shallow Hazards

No significant shallow drilling hazards have been encountered over the White Rose Field during exploration, delineation, or development drilling. Hazards such as high-

amplitude, shallow events were not identified during the inspection, study and reporting on various 2-D and 3-D high-resolution geophysical data vintages. The only concern raised by the 1997 shallow 3-D reprocessed data is the presence of a possible gas chimney centered on the crest of the White Rose High that extends in a small area toward southwest. At this time, no delineation or development drilling is planned in the area affected by possible gas contamination. A new high resolution survey is being planned for the North Amethyst glory hole in 2007.

2.3 Petrophysics

Tables 2-1, 2-2 and 2-3 compare the petrophysical parameters of all of the wells in the White Rose area. Table 2-4 provides the petrophysical summary for the entire Ben Nevis interval. Table 2-5 illustrates White Rose petrophysical parameters and Table 2-6 illustrates the different fluid contacts evident in the White Rose region.

	Gas Leg									
	Well Type		Top Depth (m TVD ss)	Gross Thickness (m)	Net:Gross	Porosity (%)	Permeability (mD)			
	H20	Delineation	2807.1	100	0.2	13	14			
	O-28Y	Delineation	N/A	N/A	N/A	N/A	N/A			
	B19z	Delineation	2857.2	43.6	6.1	12.8	34.7			
	B19	Delineation	2779.5	94	25.4	14	68.2			
	E09	Delineation	2784	82	18	13	41			
gior	L08	Delineation	2771.2	102	46.8	15.6	92.6			
Region	E18 1	Injector	N/A	N/A	N/A	N/A	N/A			
r I	E18 2 Producer		N/A	N/A	N/A	N/A	N/A			
me	E18 3 Injector		N/A	N/A	N/A	N/A	N/A			
Development	E18 4	Producer	N/A	N/A	N/A	N/A	N/A			
eve	A17	Delineation	2854.5	19.5	3.9	15	91.3			
	B07 1	Injector	2758.53	113	47.5	16.3	139.5			
Rose	B07 2	Producer	N/A	N/A	N/A	N/A	N/A			
R	B07 3	Producer	N/A	N/A	N/A	N/A	N/A			
White	B07 4	Injector	2752.46	157.5	75.6	16	125.5			
l≯	B07 5	Producer	N/A	N/A	N/A	N/A	N/A			
	B07 6	Injector	2819.03	66	0.66	12.5	33.7			
	B07 8	Injector	2851.88	20.52	4.72	11.5	25			
	B07 9	Injector	N/A	N/A	N/A	N/A	N/A			
SWRX	F04	Delineation	2700.06	191.3	118.6	17.2	140.5			
NS VS	F04z	Delineation	2881.98	6	1.26	15.8	95.4			
NA	K-15	Exploration	2267.9	66	46.2	18.5	111			

Table 2-1 Petrophysical Summary from the Gas Leg Intervals

				Oil Leg			
	Well	Туре	Top Depth (m TVD ss)	Gross Thickness (m)	Net:Gross	Porosity (%)	Permeability (mD)
	H20	Delineation	2872.1	150	4.5	17	87
	O-28Y	Delineation	2890.61	281.8	84.53	16.1	95
	B19z	Delineation	2893.56	128	48.5	15.4	86.9
	B19	Delineation	2871.9	129.4	95.75	16	114.63
	E09	Delineation	2869.4	138.2	100.9	16	72.6
uo	L08	Delineation	2872	137.7	114.3	17	133
egi	E18 1	Injector	N/A	N/A	N/A	N/A	N/A
t R	E18 2	Producer	N/A	2071.6	1781.6	17	140
nen	L08DelineationE18 1InjectorE18 2ProducerE18 3InjectorE18 4ProducerA17DelineationB07 1Injector		N/A	N/A	N/A	N/A	N/A
pr	E18 4 Producer		N/A	1247	1097.73	17	130
/elc	A17	Delineation	2874.4	125.3	92.7	16.4	99
)e/	B07 1	Injector	2871.52	113.75	91	16.5	140.5
se [B07 2	Producer	N/A	1102	881.8	16	140.5
Rose	B07 3	Producer	N/A	1075	982.2	17	170
tel	B07 4	Injector	2858.94	131.5	99.9	17	156
White	B07 5	Producer	N/A	1447	1230	17.8	146
>	B07 6	Injector	2871.99	106.8	83.31	17	172
	B07 8	Injector	2871.54	122	98.9	15.2	103
	B07 9	Injector	N/A	N/A	N/A	N/A	N/A
SWR	F04	Delineation	2888.26	42	19.3	16.6	126.05
IS	F04z	Delineation	2887.94	79.5	27	17	142.2
NA	K-15	Exploration	2333.9	52.5	51.97	22.6	320

Table 2-2 Petrophysical Summary for the Oil Leg Intervals

				Water Leg	3		
	Well	Туре	Top Depth (m TVD ss)	Gross Thickness (m)	Net Sand :Gross	Porosity (%)	Permeability (mD)
	H20	Delineation	3003.2	237.5	114	15	47
	O-28Y	Delineation	3170.09	109.5	46	15.3	69.6
	B19z	Delineation	3004.81	191.6	147.5	16	110.7
	B19	Delineation	2999.9	110.5	81.73	15.6	91.36
	E09	Delineation	3008.3	111.5	83.6	15	69
uo	L08	Delineation	3009	63	42.1	14.6	68.1
Development Region	E18 1	Injector	N/A	N/A	N/A	N/A	N/A
t R	E18 2	Producer	N/A	N/A	N/A	N/A	N/A
ner	E18 3	Injector	N/A	1352	987.1	15	75.7
μd	E18 4	Producer	N/A	N/A	N/A	N/A	N/A
/elc	A17	Delineation	3000	58	41	16	85
)e/	B07 1	Injector	N/A	N/A	N/A	N/A	N/A
	B07 2	Producer	N/A	N/A	N/A	N/A	N/A
Sos	B07 3	Producer	N/A	N/A	N/A	N/A	N/A
te F	B07 4	Injector	N/A	N/A	N/A	N/A	N/A
White Rose	B07 5	Producer	N/A	N/A	N/A	N/A	N/A
>	B07 6	Injector	2998.45	66.5	43.2	16.7	157
	B07 8 Injector		2992.62	42.28	29.6	14.7	87
	B07 9	Injector	N/A	454.9	341.1	16.5	144.8
SWRX	F04	Delineation	N/A	N/A	N/A	N/A	N/A
SW	F04z	Delineation	2968.23	97.4	75	17.6	156.2
NA	K-15	Exploration	2386.39	86.5	86.4	23.1	365

Table 2-3 Petrophysical Summary for the Water Leg Intervals

			Total I	Ben Nevis	Interval		
	Well Type		Top Depth (m TVD ss)	Gross Thickness (m)	Net Sand :Gross	Porosity (%)	Permeability (mD)
	H20	Delineation	2807.1	433.8	146.3	14.8	44.5
	O-28Y	Delineation	2890.61	388	138.63	15.2	77
	B19z	Delineation	2857.2	362.4	227.53	15.5	95
	B19	Delineation	2779.5	330	212.7	15.7	96.5
	E09	Delineation	2784	335.9	212.3	14.6	66.3
Ы	L08	Delineation	2771.2	300.9	213.9	16.3	109.8
Development Region	E18 1	Injector	2840.42	242	188.6	16	91.6
t R	E18 2	Producer	N/A	N/A	N/A	N/A	N/A
len	E18 3 Injector		N/A	N/A	N/A	N/A	N/A
pu	E18 4	Producer	N/A	N/A	N/A	N/A	N/A
elo	A17	Delineation	2854.5	203.1	142.4	16.1	92.4
Je V	B07 1	Injector	2758.53	226.3	140.8	16.3	140.5
e	B07 2	Producer	N/A	N/A	N/A	N/A	N/A
Rose	B07 3	Producer	N/A	N/A	N/A	N/A	N/A
e E	B07 4	Injector	2752.46	285.5	176.4	16.5	142.5
White	B07 5	Producer	N/A	N/A	N/A	N/A	N/A
	B07 6	Injector	2819.03	234.7	132.1	16.9	162
	B07 8	Injector	2851.88	183.3	132.7	15	96.8
	B07 9	Injector	N/A	N/A	N/A	N/A	N/A
SWRX	F04	Delineation	2700	232.25	138.4	17.1	138
S	F04z	Delineation	2881.98	183.3	114	17.3	149.5
NA	K-15	Exploration	2267.9	205	184.5	22	290

Table 2-4 Petrophysical Summary Table for the Entire Ben Nevis Interval

-		Gross	Net	Net	Pay	Pay	Pay
Well	Formation	Thickness	Reservoir	Pay	Avg	Avg	Avg
				НРТ	Phi	Sw	Perm
		h (m)	h (m)	h (m)	%	%	md
	Wyandot Gas	9	8	6	19	30	-
N-22	Ben Nevis Gas	124	65	36	16	19	29
IN-22	Cape Broyle Gas	54	8	1	15	49	49
	Hibernia Oil	288	84	37	12	29	19
	Ben Nevis Gas	137	16	7	14	33	14
J-49	Ben Nevis Oil	38	32	25	14	23	41
0 10	Eastern Shoals Oil	99	20	6	12	33	9
	Ben Nevis Gas	127	61	57	13	26	15
N-30	Ben Nevis Oil	15	12	12	13	18	27
11-50	Eastern Shoals Oil	50	10	10	14	31	16
	Ben Nevis Gas	58	11	0	0	0	0
	Ben Nevis Oil	115	59	5	16	0	0
H-20	Ben Nevis Transition	10	9	0	0	0	0
	Ben Nevis Water	244	184	0	0	0	0
	Ben Nevis Gas	67	29	28	11	24	9
	Ben Nevis Oil	118	108	106	15	19	45
E-09	Ben Nevis Transition	19	15	8	15	36	64
	Avalon Water	112	97	-	-	-	-
	Hibernia Lwr1 Oil	107	48	21	12	27	33
	Hibernia Lwr2 Oil	90	20	8	13	37	15
	Ben Nevis Gas	83	56	51	14	18	18
	Ben Nevis Oil	117	108	108	16	16	82
L-08	Ben Nevis Transition	20	18	7	14	35	43
	Ben Nevis Water	63	56	-	-	-	-
	Ben Nevis Gas**	19.20**	11.13**	9	12**	29**	2*
	Ben Nevis Oil	110	93	93	16	21	75
A-17	Ben Nevis Transition	15	11	7	18	36	206
	Ben Nevis Water	58	47	-	-	-	-
		on behind intermed	liate casing and not	evaluated. Portion	of gas zone in open	hole contaminated v	vith cement.
	Ben Nevis Gas						
	Ben Nevis Oil						
J-91	Ben Nevis Transition						
	Ben Nevis Water	257	117	-	18	-	-
	Ben Nevis Gas***	163	126	126	17	13	123
	Ben Nevis Oil**	43	17	17	16	17	63
F-04 Low Deviation Well	Ben Nevis Transition	-	-	-	-	-	-
	Ben Nevis Water**	-	-	-	-	-	-
	Ben Nevis Gas	13	3	3	10	35	15
	Ben Nevis Oil	81	30	30	14	27	74
F-04Z Deviated Well	Ben Nevis Transition	-	-	-	-	-	-
	Ben Nevis Water	98	87	87	15	_	93
	Don Nevis Waler	30	07	07	10	-	30

Table 2-5 White Rose Petrophysical Parameters

		Gross	Net	Net	Pay	Pay	Pay
Well	Formation	Thickness	Reservoir	Pay	Avg	Avg	Avg
-				HPT	Phi	Sw	Perm
		h (m)	h (m)	h (m)	%	%	md
	Ben Nevis Gas	83	55	55	14	19	77
B07_1 Vertical	Ben Nevis Oil	113	96	96	16	14	125
Injector Through	Ben Nevis	-	-	-	-	-	
Reservoir	Transition	-	-	-	-	-	-
	Ben Nevis Water	-	-	-	-	-	-
	Ben Nevis Gas	-	-	-	-	-	-
B07_2 Horizontal	Ben Nevis Oil****	1,098	883	883	16	10	140
Producer	Ben Nevis	-	-	-	-	-	-
	Transition						
	Ben Nevis Water	-	-	-	-	-	-
	Ben Nevis Gas	116	81	81	14	13	80
B07_4 Deviated	Ben Nevis Oil Ben Nevis	128	113	113	16	9	136
Injector	Transition	-	-	-	-	-	-
	Ben Nevis Water		-	-		-	-
	Ben Nevis Gas	13	1	- 1	- 11	37	15
B07_6 Vertical	Ben Nevis Oil	127	92	92	15	21	108
Injector Through	Ben Nevis						
Reservoir	Transition	-	-	-	-	-	-
	Ben Nevis Water	55	47	47	15	-	96
	Ben Nevis Gas	-	-	-	-	-	-
B07 3 Horizontal	Ben Nevis Oil	1,075	982	982	17	9	171
Producer	Ben Nevis						-
Producer	Transition	-	-	-	-	-	-
	Ben Nevis Water	-	-	-	-	-	-
	Ben Nevis Gas	-	-	-	-	-	-
B07 5 Horizontal	Ben Nevis Oil	1,434	1,230	1,230	18	10	146
Producer	Ben Nevis	_	_	_	_	-	_
	Transition						
	Ben Nevis Water	-	-	-	-	-	-
DOT 0 Vertical	Ben Nevis Gas	20	10	4	12	43	28
B07_8 Vertical Injector Through	Ben Nevis Oil	121	101	101	15	16	105
Reservoir	Ben Nevis Transition	-	-	-	-	-	-
Reservoir	Ben Nevis Water	42	135	24	15	-	89
	Ben Nevis Gas	-	-	-	-	-	-
	Ben Nevis Oil	-	-	-	-	-	-
B07_9 Horizontal	Ben Nevis						
Injector	Transition	-	-	-	-	-	-
	Ben Nevis Water	455	341	341	17	-	145
	Wyandot Gas	-	-	-	-	-	-
	Ben Nevis Gas	160	44	44	18	11	189
J22_1 Deviated	Ben Nevis Oil	-	-	-	-	-	-
Gas Injector	Ben Nevis	-	-	-	-	-	-
	Transition						
	Ben Nevis Water	-	-	-	-	-	-
	Ben Nevis Gas	-	-	-	-	-	-
E18_1 Vertical	Ben Nevis Oil	111	84	84	16	19	95
Injector Through	Ben Nevis	-	-	-	-	-	-
Reservoir	Transition	104	00	00	15		60
	Ben Nevis Water Ben Nevis Gas	131	96	96	15		60
	Ben Nevis Gas	- 2,066	- 1,782	- 1,782	- 17	- 13	- 131
E18_2 Horizontal	Ben Nevis						
Producer	Transition	-	-	-	-	-	-
	Ben Nevis Water	-	-	-	-	-	-
	Ben Nevis Gas	-	-	-	-	-	-
E 10 0 11 1 1	Ben Nevis Oil	-	-	-	-	-	-
E18_3 Horizontal	Ben Nevis						
Injector		-	-	-	-	-	-
injector	Transition						

		Gross	Net	Net	Pay	Pay	Pay
Well	Formation	Thickness	Reservoir	Pay	Avg	Avg	Avg
				HPT	Phi	Sw	Perm
		h (m)	h (m)	h (m)	%	%	md
	Ben Nevis Gas	-	-	-	-	-	-
E40 411 · · · ·	Ben Nevis Oil	1,240	1,098	1,098	17	13	130
E18_4 Horizontal	Ben Nevis						
Producer	Transition	-	-	-	-	-	-
	Ben Nevis Water	-	-	-	-	-	-
	Ben Nevis Gas	-	-	-	-	-	-
E18_5 Horizontal	Ben Nevis Oil	-	-	-	-	-	-
Injector	Ben Nevis		_	-	-	_	
injector	Transition	-	-	-	-	-	-
	Ben Nevis Water	859	716	716	16	-	94
	Ben Nevis Gas	-	-	-	-	-	-
E18-6 Horizontal	Ben Nevis Oil	2,135	1,697	1,697	16	16	115
Producer	Ben Nevis		_		_	_	_
TTOULCEI	Transition		-	-	_	-	
	Ben Nevis Water	-	-	-	-	-	-
E18_7 Horizontal Injector	Ben Nevis Gas	-	-	-	-	-	-
	Ben Nevis Oil	-	-	-	-	-	-
	Ben Nevis		_	-	-	-	-
	Transition						
	Ben Nevis Water	1,204	1,029	835	16	-	92
	Ben Nevis Gas	94	25	25	14	23	68
	Ben Nevis Oil	129	96	96	16	19	115
B-19	Ben Nevis	-	-	-	-	-	-
	Transition						
	Ben Nevis Water	110	82	82	16	-	91
	Ben Nevis Gas	37	5	5	13	36	35
B-19Z Deviated	Ben Nevis Oil	110	42	42	15	30	87
Well	Ben Nevis	-	-	-	-	-	-
	Transition	470	404	101	10		
	Ben Nevis Water	170	131	131	16	-	111
	Ben Nevis Gas	- 282	-	-	- 16	-	- 95
O-28Y	Ben Nevis Oil	282	85	85	10	21	95
0-281	Ben Nevis	-	-	-	-	-	-
	Transition Ben Nevis Water	110	46	46	15	-	70
		110	40	-	15	-	70
	Ben Nevis Gas Ben Nevis Oil	- 70	- 1	- 1	- 15	- 36	- 80
O-28X Deviated	Ben Nevis Oli Ben Nevis	70		1	15	30	00
Well	Transition	-	-	-	-	-	-
	Ben Nevis Water	-	-	-	-	-	-
	Ben Nevis Gas	66	46	46	- 19	- 12	111
	Ben Nevis Oil	53	52	52	23	11	320
K-15	Ben Nevis		JL		20	11	520
K-15		-	-	-	-	-	-
1	Transition						

*Thicknesses for wells from F-04 onward are based on measured depth for comparison against modeled values

**Reservoir and oil pay summations for development wells are based on 3mD permeability to air for comparison against modeled RMS values.

***Gas pay summations for development wells are based on 0.5 mD permeability to air for comparison against modeled RMS values.

****Summary covers analysis interval for B07_2 – Openhole interval is 1133.0m MD

Well	Formation	Contact	Log Depth	Subsea Depth
wen	Formation	Contact	(m TVD)	(m SS TVD)
L-61	Ben Nevis	Oil/Water	(11 1 4 0)	(11 33 1 4 2)
L-61	Ben Nevis	Top of Transition	2986	2963.1
	1	Bottom of		
L-61	Ben Nevis	Transition	3007	2984.1
N-22	Hibernia	Oil/Water	3631.3	3603.6
J-49	Ben Nevis	Gas/Oil	3092.6	3069.7
J-49	Ben Nevis	Oil/Water	3154	3131.1
N-30	Ben Nevis	Gas/Oil	3039.2	3014.2
H-20	Ben Nevis	Gas/Oil (Estimated)	2901.3	2874.9
H-20	Ben Nevis	Oil/Water		_
H-20	Ben Nevis	Top of Transition	3016.7	2990.3
-		Bottom of		
H-20	Ben Nevis	Transition	3027.2	3000.8
E-09	Ben Nevis	Gas/Oil	2894.8	2871.8
E-09	Ben Nevis	Oil/Water		
E-09	Ben Nevis	Top of Transition	3013	2990
E-09	Ben Nevis	Bottom of	3032.5	3009.5
	201110110	Transition	0002.0	0000.0
		0	0007	0070
L-08	Ben Nevis	Gas/Oil	2897	2872
L-08	Ben Nevis Ben Nevis	Oil/Water Top of Transition	3014	2989
L-08	Den nevis	Bottom of	3014	2969
L-08	Ben Nevis	Transition	3034.5	3009.5
		Indirioni		
A-17	Ben Nevis	Gas/Oil	2899.7	2874.7
A-17	Ben Nevis	Oil/Water		
A-17	Ben Nevis	Top of Transition	3010	2985
A-17	Ben Nevis	Bottom of	3024.5	2999.5
A-11	Den Nevis	Transition	3024.3	2999.0
J-91	Ben Nevis	Wet	-	-
E 04	Den Maufe	Coo/0!!	2040 5	2007 5
F-04 F-04	Ben Nevis Ben Nevis	Gas/Oil Oil/Water	2910.5	2887.5
F-04 F-04	Ben Nevis Ben Nevis	Top of Transition		+
		Bottom of		
F-04	Ben Nevis	Transition		
F-04Z	Ben Nevis	Gas/Oil		
F-04Z	Ben Nevis	Oil/Water	2991.3	2968.2
F-04Z	Ben Nevis	Top of Transition		
F-04Z	Ben Nevis	Bottom of		
1 072		Transition		
B07_1	Ben Nevis	Gas/Oil	2895	2872
B07_1	Ben Nevis	Oil/Water		
B07_1	Ben Nevis	Top of Transition		
B07_1	Ben Nevis	Bottom of Transition		
		TANSIUUN		

Table 2-6 Fluid Contacts, White Rose Region

Well	Formation	Contact	Log Depth	Subsea Depth
			(m TVD)	(m SS TVD)
B07_2	Ben Nevis	Gas/Oil		
B07_2	Ben Nevis	Oil/Water	horizontal producer	
B07_2	Ben Nevis	Top of Transition		
B07_2	Ben Nevis	Bottom of		
		Transition		
B07_4	Ben Nevis	Gas/Oil	2882	2858.94
B07_4	Ben Nevis	Oil/Water		
B07_4	Ben Nevis	Top of Transition		
B07_4	Ben Nevis	Bottom of		
		Transition		
B07_6	Ben Nevis	Gas/Oil		
B07_6	Ben Nevis	Oil/Water	3021.5	2998.5
B07_6	Ben Nevis	Top of Transition	3021.5	2990.0
0		Bottom of		
B07_6	Ben Nevis	Transition		
		Tunonon		
B07 3	Ben Nevis	Gas/Oil		
B07_3	Ben Nevis	Oil/Water	horizontal producer	
B07_3	Ben Nevis	Top of Transition	nonzontar producer	
		Bottom of		
B07_3	Ben Nevis	Transition		
B07_5	Ben Nevis	Gas/Oil		
 B07_5	Ben Nevis	Oil/Water	horizontal producer	
B07_5	Ben Nevis	Top of Transition		
B07_5	Ben Nevis	Bottom of		
B07_5	Dell Nevis	Transition		
B07_8	Ben Nevis	Gas/Oil	2894.54	2871.54
	Ben Nevis	Oil/Water	3015.62	2992.62
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
		Transition		
D 07.0	Des Nete	0 (0')		
B07_9	Ben Nevis	Gas/Oil	water injector	
	Ben Nevis Ben Nevis	Oil/Water	water injector	
	Dell INENS	Top of Transition Bottom of		
	Ben Nevis	Transition		
		Tansiliun		
J22_1	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water		
	Ben Nevis	Top of Transition		
		Bottom of		
	Eastern Shoals	Transition		
		-		
E18_1	Ben Nevis	Gas/Oil	2895.6	2872.6
	Ben Nevis	Oil/Water	3032.07	3009.07
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
	Den Nevis	Transition		

En (m TVD) (m SS TVD) E18_2 Ben Nevis Gas/Oil horizontal producer Ben Nevis Top of Transition horizontal producer Ben Nevis Ben Nevis Gas/Oil Ben Nevis Gas/Oil horizontal injector E18_3 Ben Nevis Gas/Oil Ben Nevis Top of Transition horizontal injector Ben Nevis Bottom of horizontal injector Ben Nevis Gas/Oil horizontal injector Ben Nevis Gas/Oil horizontal producer Ben Nevis Gas/Oil horizontal producer Ben Nevis Gas/Oil horizontal injector Ben Nevis Gas/Oil horizontal injector Ben Nevis Gas/Oil horizontal injector Ben Nevis Gas/Oil horizontal producer Ben Nevis Gas/Oil horizontal injector <th>Well</th> <th>Formation</th> <th>Contact</th> <th>Log Depth</th> <th>Subsea Depth</th>	Well	Formation	Contact	Log Depth	Subsea Depth
E18_2 Ben Nevis Gas/Oil Ben Nevis Top of Transition Ben Nevis Top of Transition Ben Nevis Gas/Oil Ben Nevis Boltom of Ben Nevis Gas/Oil Ben Nevis Boltom of Ben Nevis Boltom of Ben Nevis Boltom of Ben Nevis <t< th=""><th>Wen</th><th>1 of mation</th><th>Contact</th><th></th><th></th></t<>	Wen	1 of mation	Contact		
Ben Nevis Oil/Water horizontal producer Ben Nevis Top of Transition Bottom of Transition E18_3 Ben Nevis Gas/Oil Ben Nevis Gas/Oil horizontal injector Ben Nevis Top of Transition Image: Constraint of the	F18 2	Ben Nevis	Gas/Oil	((
Ben Nevis Top of Transition Ben Nevis Bottom of Transition E18_3 Ben Nevis Ben Nevis Gas/Oil Ben Nevis Oil/Water Ben Nevis Top of Transition Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis				horizontal producer	
Ben Nevis Bottom of Transition E18_3 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal injector Ben Nevis Top of Transition interval Ben Nevis Bottom of interval E18_4 Ben Nevis Gas/Oil Ben Nevis Gas/Oil interval Ben Nevis Top of Transition interval Ben Nevis Top of Transition interval Ben Nevis Gas/Oil interval Ben Nevis Gas/Oil interval Ben Nevis Gas/Oil interval Ben Nevis Bottom of interval Ben Nevis Gas/Oil interval Ben Nevis Bottom of interval Ben Nevis Gas/Oil interval Ben Nevis Batom of					
Ben Nevs Transition E18_3 Ben Nevis Gas/Oil Ben Nevis Top of Transition Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom			· ·		
E18_3 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal injector Ben Nevis Bottom of Image: Second Se		Ben Nevis			
Ben Nevis Oil/Water horizontal injector Ben Nevis Top of Transition Image: Constraint of the second					
Ben Nevis Oil/Water horizontal injector Ben Nevis Top of Transition Image: Constraint of the second	E18 3	Ben Nevis	Gas/Oil		
Ben Nevis Top of Transition Ben Nevis Bottom of E18_4 Ben Nevis Ben Nevis Gas/Oil Ben Nevis Oil/Water Ben Nevis Top of Transition Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Gas/Oil E18_5 Ben Nevis Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Bottom of				horizontal injector	
Ben Nevis Bottom of E18_4 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal producer Ben Nevis Top of Transition Ben Nevis Bottom of Ben Nevis Bottom of E18_5 Ben Nevis Ben Nevis Oil/Water Ben Nevis Oil/Water Ben Nevis Oil/Water Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of				,	
E18_4 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal producer Ben Nevis Top of Transition					
Ben Nevis Oil/Water horizontal producer Ben Nevis Top of Transition Ben Nevis Ben Nevis Bottom of E18_5 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal injector Ben Nevis Top of Transition Ben Nevis Ben Nevis Bottom of Image: Constraint of the second secon					
Ben Nevis Oil/Water horizontal producer Ben Nevis Top of Transition Ben Nevis Ben Nevis Bottom of E18_5 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal injector Ben Nevis Top of Transition Ben Nevis Ben Nevis Bottom of Image: Constraint of the second secon	E18 4	Ben Nevis	Gas/Oil		
Ben Nevis Top of Transition Ben Nevis Bottom of E18_5 Ben Nevis Ben Nevis Gas/Oil Ben Nevis Oil/Water Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of E18_6 Ben Nevis Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Gas/Oil Ben Nevis Gas/Oil Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Bottom of Ben Nevis Gas/Oil 2893.56 Ben Nev				horizontal producer	
Ben Nevis Bottom of E18_5 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal injector Ben Nevis Top of Transition					
E18_5 Ben Nevis Gas/Oil Ben Nevis Oil/Water horizontal injector Ben Nevis Top of Transition					
Ben NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofE18_6Ben NevisGas/OilBen NevisOil/Waterhorizontal producerBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisSottom ofBen NevisGas/OilBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisSottom ofBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisSottom ofBen NevisBottom of<					
Ben NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofE18_6Ben NevisGas/OilBen NevisOil/Waterhorizontal producerBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisSottom ofBen NevisGas/OilBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisSottom ofBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisSottom ofBen NevisBottom of<	E18 5	Ben Nevis	Gas/Oil		
Ben NevisTop of TransitionBen NevisBottom ofE18_6Ben NevisGas/OilBen NevisOil/Waterhorizontal producerBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisOil/WaterBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisOil/WaterBen NevisOil/WaterBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisBottom ofBen NevisBottom of<				horizontal iniector	
Ben NevisBottom ofE18_6Ben NevisGas/OilBen NevisOil/Waterhorizontal producerBen NevisTop of TransitionBen NevisBottom ofE18_7Ben NevisGas/OilBen NevisOil/Waterhorizontal injectorBen NevisOil/Waterhorizontal injectorBen NevisOil/Waterhorizontal injectorBen NevisBottom ofBen NevisBottom ofBen NevisGas/Oil2871.9Ben NevisGas/Oil2871.9Ben NevisOil/Water2999.92952.9Ben NevisOil/WaterBen NevisBottom ofBen NevisGas/Oil2893.56Ben NevisGas/Oil2893.56Ben NevisOil/Water3004.81Ben NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisGas/OilBen NevisBottom ofBen NevisBottom of<					
E18_6Ben NevisGas/OilBen NevisOil/Waterhorizontal producerBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilE18_7Ben NevisGas/OilBen NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisOil/Waterhorizontal injectorBen NevisBottom ofBen NevisBottom ofBen NevisGas/Oil2871.9Ben NevisOil/Water2999.92952.9Ben NevisOil/WaterBen NevisBottom ofBen NevisGas/Oil2893.56Ben NevisGas/Oil2893.56Ben NevisOil/Water3004.81Ben NevisTop of TransitionBen NevisTop of TransitionBen NevisBottom ofBen NevisOil/WaterBen NevisOil/WaterBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom					
Ben NevisOil/Waterhorizontal producerBen NevisTop of TransitionBen NevisBottom ofE18_7Ben NevisGas/OilBen NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisOil/WaterBen NevisOil/WaterBen NevisBottom ofBen NevisBottom ofBen NevisOil/WaterBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisOil/WaterBen NevisTop of TransitionBen NevisBottom ofBen Nevis </th <th></th> <th></th> <th></th> <th></th> <th></th>					
Ben NevisOil/Waterhorizontal producerBen NevisTop of TransitionBen NevisBottom ofE18_7Ben NevisGas/OilBen NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisOil/WaterBen NevisOil/WaterBen NevisBottom ofBen NevisBottom ofBen NevisOil/WaterBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisOil/WaterBen NevisTop of TransitionBen NevisBottom ofBen Nevis </th <th>E18 6</th> <th>Ben Nevis</th> <th>Gas/Oil</th> <th></th> <th></th>	E18 6	Ben Nevis	Gas/Oil		
Ben NevisTop of TransitionBen NevisBottom ofE18_7Ben NevisGas/OilBen NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisGas/Oil2871.9Ben NevisOil/Water2999.9Ben NevisOil/Water2999.9Ben NevisBottom ofBen NevisBottom ofBen NevisGas/Oil2893.56Ben NevisOil/Water3004.81Ben NevisTop of TransitionBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisOil/WaterBen NevisBottom ofBen NevisBottom ofBen NevisTop of TransitionBen NevisBottom ofBen NevisBotto				horizontal producer	
Ben NevisBottom ofE18_7Ben NevisGas/OilBen NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/Oil2871.9Ben NevisOil/Water2999.9Ben NevisOil/Water2999.9Ben NevisTop of TransitionBen NevisBottom ofBen NevisOil/Water2999.9Ben NevisBottom ofBen NevisBottom ofBen NevisGas/Oil2893.56Ben NevisOil/Water3004.81Ben NevisTop of TransitionBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisOil/WaterBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom of					
E18_7Ben NevisGas/OilBen NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofBen NevisGas/Oil2871.9B-19Ben NevisGas/OilBen NevisOil/Water2999.9Ben NevisTop of TransitionBen NevisBottom ofBen NevisOil/Water2999.9Ben NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisGas/Oil2893.56Ben NevisOil/Water3004.812957.81Ben NevisTop of TransitionBen NevisBottom ofImage: State of the sta					
Ben NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofB-19Ben NevisGas/Oil2824.9Ben NevisOil/Water2999.92952.9Ben NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisOil/WaterBen NevisOil/WaterBen NevisOil/WaterBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisBottom of					
Ben NevisOil/Waterhorizontal injectorBen NevisTop of TransitionBen NevisBottom ofB-19Ben NevisGas/Oil2824.9Ben NevisOil/Water2999.92952.9Ben NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisGas/OilBen NevisGas/OilBen NevisOil/WaterBen NevisOil/WaterBen NevisOil/WaterBen NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofBen NevisBottom of	E18 7	Ben Nevis	Gas/Oil		
Ben NevisTop of TransitionBen NevisBottom ofB-19Ben NevisGas/Oil2871.92824.9Ben NevisOil/Water2999.92952.9Ben NevisTop of Transition2893.562846.56Ben NevisGas/Oil2893.562846.56Ben NevisOil/Water3004.812957.81Ben NevisBottom of1000000000000000000000000000000000000				horizontal injector	
Ben NevisBottom ofB-19Ben NevisGas/Oil2871.92824.9Ben NevisOil/Water2999.92952.9Ben NevisTop of Transition2893.562846.56Ben NevisGas/Oil2893.562846.56Ben NevisOil/Water3004.812957.81Ben NevisBottom of00Ben NevisBottom of00Ben NevisOf Transition00Ben NevisGas/Oil00Ben NevisBottom of00Ben NevisBottom of00Ben NevisBottom of00D-28YBen NevisGas/Oil0		Ben Nevis	Top of Transition		
Ben NevisOil/Water2999.92952.9Ben NevisTop of TransitionBen NevisBottom ofB-19ZBen NevisGas/Oil2893.562846.56Ben NevisOil/Water3004.812957.81Ben NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofO-28YBen NevisGas/Oil		Ben Nevis	Bottom of		
Ben NevisOil/Water2999.92952.9Ben NevisTop of TransitionBen NevisBottom ofB-19ZBen NevisGas/Oil2893.562846.56Ben NevisOil/Water3004.812957.81Ben NevisTop of TransitionBen NevisBottom ofBen NevisGas/OilBen NevisBottom ofO-28YBen NevisGas/Oil					
Ben NevisTop of TransitionBen NevisBottom ofB-19ZBen NevisBen NevisGas/Oil2893.562846.56Ben NevisOil/Water3004.812957.81Ben NevisTop of TransitionBen NevisBottom ofO-28YBen NevisBen NevisGas/Oil	B-19	Ben Nevis	Gas/Oil	2871.9	2824.9
Ben NevisBottom ofB-19ZBen NevisGas/Oil2893.562846.56Ben NevisOil/Water3004.812957.81Ben NevisTop of TransitionBen NevisBottom ofBen NevisBottom ofImage: Comparison of the second sec		Ben Nevis	Oil/Water	2999.9	2952.9
B-19ZBen NevisGas/Oil2893.562846.56Ben NevisOil/Water3004.812957.81Ben NevisTop of TransitionBen NevisBen NevisBen NevisBottom ofImage: Comparison of the second		Ben Nevis	Top of Transition		
Ben Nevis Oil/Water 3004.81 2957.81 Ben Nevis Top of Transition Ben Nevis Bottom of O-28Y Ben Nevis Gas/Oil		Ben Nevis	Bottom of		
Ben Nevis Oil/Water 3004.81 2957.81 Ben Nevis Top of Transition Ben Nevis Bottom of O-28Y Ben Nevis Gas/Oil					
Ben Nevis Top of Transition Ben Nevis Bottom of O-28Y Ben Nevis	B-19Z	Ben Nevis	Gas/Oil	2893.56	2846.56
Ben Nevis Bottom of O-28Y Ben Nevis Gas/Oil		Ben Nevis	Oil/Water	3004.81	2957.81
O-28Y Ben Nevis Gas/Oil		Ben Nevis	Top of Transition		
		Ben Nevis	Bottom of		
Ron Novia Oil/Water 2017.00 0470.00	O-28Y	Ben Nevis			
		Ben Nevis	Oil/Water	3217.09	3170.09
Ben Nevis Top of Transition		Ben Nevis	Top of Transition		
Ben Nevis Bottom of		Ben Nevis	Bottom of		
O-28X Ben Nevis Gas/Oil	O-28X				
Ben Nevis Oil/Water					
Ben Nevis Top of Transition					
Ben Nevis Bottom of		Ben Nevis	Bottom of		
		_			
K-15 Ben Nevis Gas/Oil 2380.9 2333.9	K-15				
Ben Nevis Oil/Water 2433.39 2386.39				2433.39	2386.39
Ben Nevis Top of Transition					
Ben Nevis Bottom of		Ben Nevis	Bottom of		

One well, North Amethyst K-15, defines the North Amethyst field (Figure 2-26). The results from K-15 indicate an average porosity of 22.7% and average permeability of 340 md within the oil leg.

The North Amethyst well at K-15 illustrated a fairly sound seismic interpretation and velocity model in this area as predictions of the top and base of the reservoir were fairly accurate, typically within 5 to 10 m. The net to gross or reservoir quality of the Ben Nevis Sandstone in this well is slightly better than that seen in the adjacent Terrace wells of the South Avalon Pool as a result of under-compaction and a decrease in the amount of carbonate cement. Other than this aspect, the Ben Nevis sandstone, as predicted, is identical to the reservoir seen in the Terrace.

While the initial delineation wells were drilled with a water-based fluid, the more recent development wells have utilised a synthetic-based drilling fluid. Slightly different data acquisition methods are used in the synthetic drilling fluids, however the results from these methods are very similar to those determined with the water-based drilling fluids. The methods used to analyze the K-15 well are discussed in more detail later in this section.

Figure 2-27 illustrates a petrophysical summary of the North Amethyst K-15 well. The figure displays a computed log showing gas, oil and water overlaying porosity and lithology overlaying a gamma ray curve. The figure also summarizes contacts and average petrophysical parameters for the well. Figures 2-28 to 2-31 are similar displays for nearby wells including F-04, F-04Z, B-07 4 and A-17.

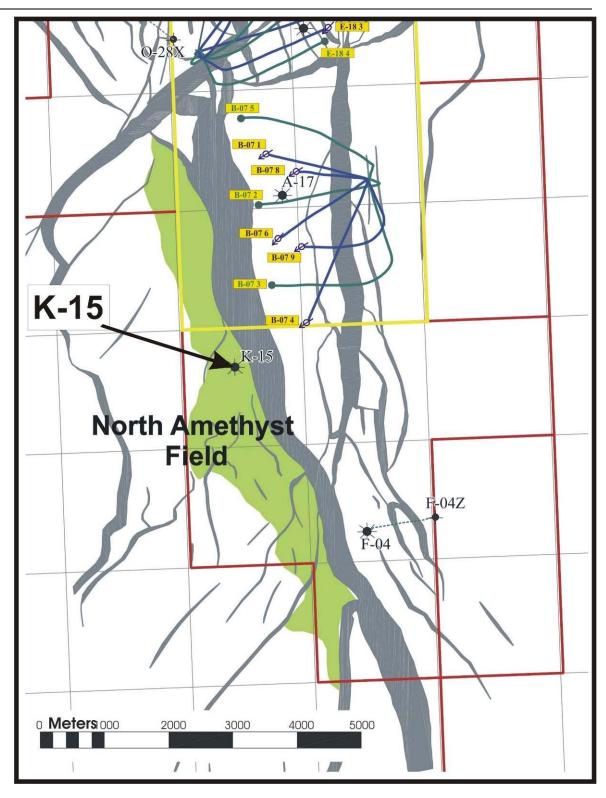
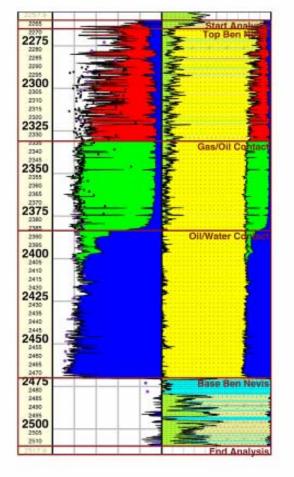



Figure 2-26 Location of the K-15 Well

K-15 Summary

Top Ben Nevis Gas/Oil Contact Oil/Water Contact Base Ben Nevis 2315.00m MD 2267.90m TVDSS 2381.00m MD 2333.90m TVDSS 2433.50m MD 2386.39m TVDSS 2520.00m MD 2472.88m TVDSS

Reservoir Cutoffs Phie>.10 v/v, Sw <=1, Vsh <.30 v/v, K >3mD Pay Cutoffs Phie>.10 v/v, Swt <5, Vsh <.30 v/v, K >3mD

Reservoir: Net 184.5m MD Gross 205m MD N/G 0.90

Net Gas Pay 46.2m MD (N/G .70) (Avg) Phie 18.5 %, Sw 11.5%, Vsh 13.5%, K 111 mD

Net Oil Pay 51.97m MD (N/G .99) (Avg) Phie 22.6%, Sw 11%, Vsh 10%, K 320 mD

Water Zone 86.4m MD (N/G .99.9) (Avg) Phie 23.1%, Sw 94 %, Vsh 5 %, K 365mD

Figure 2-27 K-15 Petrophysical Summary

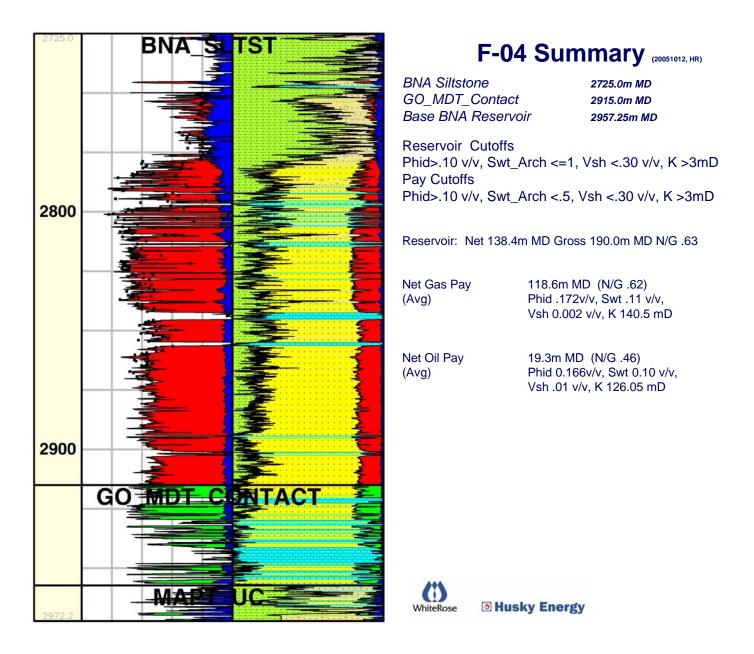


Figure 2-28 F-04 Petrophysical Summary

3234.9			
	BNA SILTS TONE	F	-04Z Summary (20051014, HR)
		BNA Siltstone	3245.0m MD 2905.0m TVD
		F04_G0_Contact ow_wire_contact	3251.0m MD 2910.9m TVD 3331.6m MD 2991.2m TVD
		Base BNA Reserve	
		Reservoir Cutoffs	
3300			Arch <=1, Vsh <.30 v/v, K >3mD
		Pay Cutoffs Phid>.10 v/v. Swt	Arch <.5, Vsh <.30 v/v, K >3mD
		, _	
		Reservoir: Net 114.0	m TVD Gross 183.3m MD N/G .62
	OW WRE CONTACT	Not Cas Pay (Assum	ed) 1.26m TVD (N/G .21)
		(Avg)	Phid .158v/v, Swt .32 v/v,
			Vsh 0.03 v/v, K 95.4 mD
		Net Oil Pay	27.0m TVD (N/G .34)
		(Avg)	Phid 0.17v/v, Swt 0.30 v/v,
			Vsh .06 v/v, K 142.2 mD
		Water Leg	75.0m TVD (N/G .77)
3400		(Avg)	Phid 0.176v/v, Swt N/A
0400			Vsh .05 v/v, K 156.2 mD
3438.7	RANK	WhiteRose 🕲 Husky	y Energy

Figure 2-29 F-04Z Petrophysical Summary

3687.3 3700	2788.7 2800	BNA	SILTS			B07 _	4 Summary (20051017, HR)
					BNA Siltste GO_MDT_ Base BNA	Contact	3667.0m MD 2775.5m TVD 3825.5m MD 2882.0m TVD r 3953.0m MD 2971.0m tvd
					Pay Cutoff	ı∕v, Swt_A ⁱ s	urch <=1, Vsh <.30 v/v, K >3mD urch <.5, Vsh <.30 v/v, K >3mD
3800							n MD Gross 285.5m MD N/G .62 n TVD Gross 195.5m
		as_🌉	Cdn	act	Net Gas Pay (Avg)	у	75.6m MD (N/G .48) 51.5m TVD Phid .16v/v, Swt .15 v/v,
	2900	And in the second second			(,		Vsh 0.04 v/v, K 125.5 mD
0000					Net Oil Pay (Avg)		99.9m MD (N/G .76) 69.7m TVD Phid 0.17v/v, Swt 0.09 v/v,
3900					(Vsh .02 v/v, K 156 mD
3974.5	2986.0	mÄP	T_QC	- E	WhiteRose	🖲 Husky	Energy

Figure 2-30 B-07 4 Petrophysical Summary

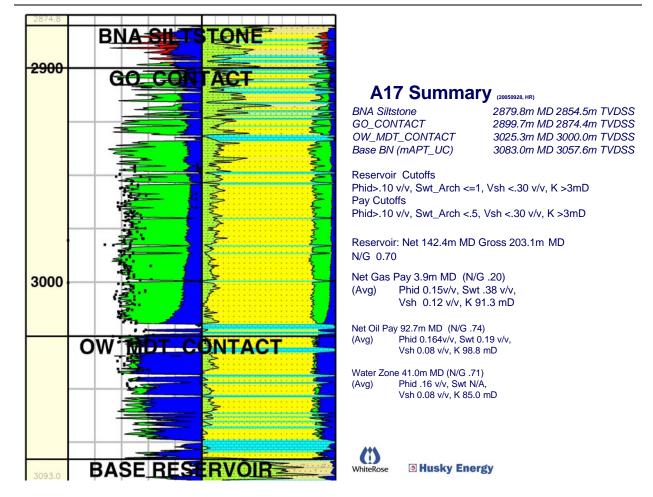


Figure 2-31 A-17 Petrophysical Summary

2.3.1 Petrophysical Analysis

2.3.1.1 Petrophysical Analysis Data

The petrophysical evaluation of the North Amethyst K-15 log data used the Geolog 6.6 Program to compute porosity, water saturation and minerals volumes. This section details the evaluation of the Ben Nevis sandstone. Tables 2-7 and 2-8 summarize the logging runs conducted on K-15 and utilized in the evaluation. All the acquired logs appear to have good quality for the Ben Nevis sandstone.

Description	Hole Section	Depth	Comments
Descent #1 AIT/PEX/CMRPlus	311 mm – vertical - - SBM	From Td to casing shoe	Nov, 01, 2006 . (15 hours) Good hole conditions Logged Resistivity, Neutron, Density, CMR Plus and GR all Logs were good quality.

Descent #2 MDT	311 mm – vertical - - SBM	Reservoir section	Nov, 0, 2006 (30 hrs) MDT Pressure Tests conducted along BNA reservoir to establish fluid gradients and contacts. Oil samples taken at 2415m and 2390m; gas samples taken at 2375m and water sample taken; total of 12 bottles filled for testing.
Descent #1-3: GR/2Xobmi/DSI	311 mm – vertical - - SBM	From Td to casing shoe	Nov 03, 2006 (08 hrs) Logged dual OBMI from TD- to base tertiary and the DSI from TD to Casing shoe
Descent #4 MDT with Dual Packer	311 mm – vertical - - SBM	Reservoir section	Nov, 03, 2006 (18 hrs) MDT vertical interference test conducted at 2430.
Descent #4 MSCT	311 mm – vertical - - SBM	Reservoir section	Nov 04, 2006 (13.5 hrs) MSCT Core samples drilled and taken along reservoir.

Table 2-8 K-15 LWD Summary

Description	Hole Section	Depth	Comments
GR-ARC	311 mm – Vertical - - SBM	From Td to casing shoe	Gamma ray and phase/attenuation resistivity data acquired during the drilling the whole to TD.

Conventional coring was conducted in the Ben Nevis reservoir section. In addition to conventional coring, sidewall cores were acquired in the lower section of the reservoir. Table 2-9 presents a summary of the core acquisitions. The values of the conventional core analysis, porosity, water saturation, maximum permeability, and grain density are presented in Table 2-10.

Table 2-9 K-15 Core Summary

Well	Core Type		Start	Finish	Recovery	Formation
K-15	Conventional	Core #1	2335.3	2445.6	95.7	Ben Nevis
K-15	Sidewall	25 recovered	2323.0	2528.0		Ben Nevis/E. Shoals

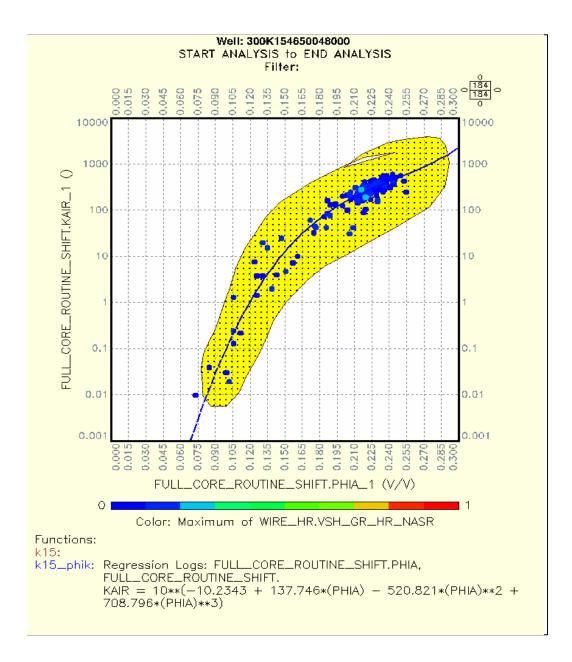
Table 2-10 K-15 Core Analysis Results

SUMMARY OF ROUTINE CORE ANALYSES RESULTS

Vacuum Oven Dried at 180°F Net Confining Stress: 800 psi

Husky Energy Husky et al North Amethyst K15 Well White Rose Field								Offshore Newfoundland File: M-36083	
		Sample	Pern	neability,	sity,	Grain	Water		
Core	Sample	Depth,	mill	idarcys	percent		Density,	Saturation,	
Number	Number	motoro	to Air	Klinkonhorg	Ambient	800	am/aa	norcont	
Number	Number	meters	to Air	Klinkenberg	Ambient	psi	gm/cc	percent	
1	1-1	2335.04	100.	88.7	20.3	20.2	2.67	6.9	
1	1-2	2335.50	109.	96.8	21.9	21.8	2.67	0.0	
1	1-3	2336.00	0.020	0.0086	10.2	10.1	2.71		
1	1-4	2336.50	41.9	35.6	20.8	20.8	2.67		
1	1-5	2337.00	0.027	0.012	9.8	9.7	2.67		
1	1-6	2337.50	0.133	0.080	10.5	10.4	2.67	30.0	
1	1-7	2338.00	368.	342.	24.2	24.1	2.65		
1	1-8	2338.50	433.	404.	25.2	25.0	2.65		
1	1-9	2339.00	42.2	35.9	18.5	18.4	2.66		
1	1-10	2339.50	63.8	55.4	17.1	17.0	2.66		
1	1-11	2340.00	195.	178.	21.9	21.8	2.65	6.0	
1	1-12	2340.54	239.	219.	21.6	21.6	2.65		
1	1-13	2341.00	3.94	2.95	14.2	14.1	2.66		
1	1-14	2341.50	325.	300.	22.5	22.4	2.65		
1	1-15	2342.00	4.65	3.48	15.0	15.0	2.75		
1	1-16	2342.47	231.	211.	22.8	22.8	2.65	6.1	
1	1-17	2343.00	164.	148.	22.9	22.9	2.67		
1	1-18	2343.50	42.5	36.1	17.6	17.6	2.65		
1	1-19	2344.00	211.	193.	21.1	21.0	2.65		
1	1-20	2344.50	419.	390.	21.8	21.7	2.66		
1	1-21	2345.00	377.	350.	23.3	23.2	2.65	3.8	
1	1-22	2345.50	132.	118.	18.8	18.7	2.65		
1	1-23	2346.00	340.	315.	23.1	23.1	2.65		
1	1-24	2346.50	368.	341.	24.3	24.2	2.65		
1	1-25	2347.00	0.027	0.012	9.9	9.7	2.67		
1	1-26	2347.53	160.	145.	21.2	21.2	2.65	6.2	
1	1-27	2348.00	72.5	63.3	18.3	18.2	2.65		
1	1-28	2348.50	324.	300.	22.2	22.2	2.65		
1	1-29	2349.00	2.04	1.50	13.8	13.7	2.66		
1	1-30	2349.50	286.	263.	22.9	22.9	2.65	0.0	
1	1-31	2350.00	45.1	38.5	17.5	17.3	2.65	9.6	
1	1-32	2350.50	279.	257.	22.2	22.0	2.68		
1	1-33	2351.00	0.253	0.168	10.5	10.4	2.66		
1	1-34 1-35	2351.50	275. 170	253. 154	22.3	22.3	2.65		
1	1-35 1-36	2352.00	170. 412.	154. 384.	22.4	22.3	2.77 2.65	3.4	
1	1-36	2352.50 2353.00	412. 7.73	5.98	23.4 12.3	23.3 12.3	2.65 2.66	3.4	
1	1-37	2353.00	1.29	0.936	12.5	12.5	2.66		
1	1-39	2353.50	259.	238.	23.4	23.3	2.66		
1 1	1-39	2004.00	209.	200.	23.4	20.0	2.00	I	

•								
1	1-40	2354.50	15.4	12.3	13.4	13.4	2.65	
1	1-41QL	2355.00	78.8	69.1	18.8	18.7	2.69	
1	1-42	2355.50	19.8	16.1	13.0	12.9	2.66	12.1
1	1-43	2355.94	210.	192.	20.5	20.5	2.65	
1	1-45	2357.00	192.	175.	20.9	20.8	2.65	
1	1-46	2357.50	3.75	2.81	12.5	12.4	2.65	
1	1-47	2358.00	252.	231.	22.7	22.6	2.65	
1	1-48	2358.50	358.	332.	23.7	23.6	2.65	3.1
1	1-49	2359.00	300.	277.	22.7	22.7	2.65	
1	1-50	2359.50	253.	233.	25.4	25.3	2.71	
1	1-51	2360.01	0.215	0.140	11.2	11.2	2.67	
1	1-52	2360.50	232.	212.	22.0	21.9	2.65	
1	1-53	2361.00	357.	331.	23.5	23.4	2.65	4.0
1	1-54	2361.50	31.2	26.1	20.5	20.5	2.87	
1	1-55	2362.00	327.	302.	22.5	22.4	2.65	
1	1-56	2362.50	270.	249.	21.6	21.6	2.65	
1	1-57	2363.00	154.	138.	22.9	22.8	2.69	
1	1-58	2363.50	284.	262.	23.5	23.5	2.66	5.3
1	1-59	2364.00	307.	284.	22.8	22.7	2.65	
1	1-60	2364.50	214.	195.	21.1	21.1	2.65	
1	1-61	2365.00	400.	372.	23.4	23.4	2.65	
1	1-62	2365.50	172.	156.	21.1	21.1	2.65	
1	1-63	2366.00	0.014	0.0053	7.2	7.1	2.67	52.6
1	1-64	2366.50	143.	128.	19.4	19.3	2.65	
1	1-65	2367.00	275.	253.	21.5	21.4	2.65	
1	1-66	2367.53	297.	274.	21.8	21.8	2.65	
1	1-67	2368.00	345.	320.	22.3	22.3	2.65	
1	1-68	2368.50	356.	330.	21.9	21.9	2.65	4.0
1	1-69QL	2369.00	305.	282.	21.0	21.0	2.64	
1	1-70	2369.50	469.	439.	23.7	23.6	2.65	
1	1-71	2369.97	246.	225.	22.6	22.4	2.66	
1	1-72	2370.50	127.	114.	19.9	19.7	2.65	
1	1-73	2371.00	169.	153.	20.6	20.4	2.77	
1	1-74	2371.50	487.	456.	24.1	24.1	2.65	2.8
1	1-75	2372.00	429.	400.	23.5	23.4	2.65	
1	1-76	2372.50	421.	392.	22.4	22.3	2.64	
1	1-77	2373.00	294.	271.	23.2	23.1	2.70	
1	1-78	2373.50	1.49	1.09	12.5	12.5	2.66	
1	1-79	2374.00	330.	305.	22.1	22.1	2.65	3.6
1	1-80	2374.50	378.	351.	22.7	22.6	2.64	
1	1-81	2375.00	369.	343.	23.4	23.3	2.64	
1	1-82	2375.50	237.	217.	22.0	21.9	2.64	
1	1-83	2376.00	25.7	21.2	14.6	14.6	2.65	
1	1-84	2376.53	175.	158.	21.8	21.8	2.65	5.8
1	1-85	2377.00	266.	245.	21.4	21.3	2.64	
1	1-86	2377.50	276.	254.	22.0	22.0	2.65	
1	1-87	2378.00	299.	275.	21.7	21.6	2.64	
	1-88	2378.53	84.8	74.6	18.6	18.4	2.65	
			0.10					
1 1	1-89	2379.00	134.	120.	19.3	19.1	2.65	10.8


1	1-91	2380.00	341.	316.	22.7	22.5	2.64	
1	1-92	2380.48	230.	210.	22.3	22.2	2.65	
1	1-93	2381.00	330.	305.	22.4	22.3	2.64	
1	1-94	2381.49	359.	333.	23.0	23.0	2.65	6.2
1	1-95	2382.00	369.	342.	23.4	23.4	2.65	
1	1-96	2382.50	3.80	2.84	13.0	13.0	2.65	
1	1-97	2383.00	308.	285.	22.2	22.0	2.64	
1	1-98	2383.48	421.	392.	24.2	24.2	2.64	
1	1-99QL	2384.00	379.	352.	22.7	22.7	2.64	
1	1-100	2384.50	403.	375.	22.9	22.9	2.64	6.1
1	1-101	2385.00	341.	315.	22.1	22.1	2.64	
1	1-102	2385.48	33.5	28.1	17.4	17.3	2.64	
1	1-103	2386.00	240.	220.	21.3	21.2	2.64	
1	1-104	2386.50	230.	210.	21.3	21.2	2.64	
1	1-105	2387.00	285.	262.	22.7	22.6	2.64	5.8
1	1-106	2387.50	274.	252.	21.5	21.3	2.64	
1	1-108	2388.59	236.	216.	21.4	21.3	2.65	
1	1-109	2389.00	349.	323.	21.7	21.6	2.64	
1	1-110	2389.50	230.	210.	21.2	21.2	2.65	
1	1-111	2390.00	387.	360.	23.0	23.0	2.65	6.0
1	1-112	2390.50	348.	322.	22.3	22.3	2.65	
1	1-113	2391.00	435.	405.	22.5	22.5	2.65	
1	1-114	2391.50	327.	303.	21.6	21.6	2.64	
1	1-115	2392.00	164.	149.	21.4	21.3	2.64	
1	1-116	2392.50	0.040	0.020	8.4	8.4	2.65	39.3
1	1-117	2393.02	341.	316.	23.6	23.6	2.64	
1	1-118	2393.50	264.	243.	22.6	22.5	2.64	
1	1-119	2394.00	227.	208.	22.0	22.0	2.64	
1	1-121	2395.00	292.	269.	22.2	22.2	2.64	
1	1-122	2395.50	250.	230.	22.0	21.9	2.64	8.6
1	1-123	2396.00	277.	255.	22.1	22.1	2.64	0.0
1	1-124	2396.50	349.	324.	23.5	23.5	2.64	
1	1-125	2397.03	324.	300.	23.0	23.0	2.64	
1	1-126	2397.50	392.	364.	24.3	24.3	2.64	
1	1-127	2397.92	276.	254.	22.5	22.4	2.64	7.3
1	1-128	2398.59	163.	147.	21.6	21.6	2.64	
1	1-129	2399.00	271.	249.	22.2	22.2	2.64	
1	1-130	2399.50	308.	284.	22.6	22.5	2.65	
1	1-131	2400.00	333.	308.	22.6	22.5	2.65	
1	1-132	2400.50	211.	192.	20.3	20.2	2.64	8.1
1	1-133	2401.00	363.	337.	22.3	22.3	2.65	5
1	1-134	2401.50	380.	353.	23.5	23.4	2.65	
1	1-135	2402.00	356.	330.	23.3	23.2	2.64	
1	1-137	2403.00	558.	524.	24.9	24.8	2.64	
1	1-138	2403.50	361.	335.	23.5	24.0	2.65	5.2
	1-130	2-100.00	001.	000.	20.0	20.7	2.00	0.2
1	139QL	2404.00	579.	544.	23.7	23.6	2.64	
1	1-140	2404.50	340.	315.	23.1	23.0	2.64	
1	1-141	2405.00	308.	284.	22.6	22.5	2.64	
1	1-142	2405.50	275.	253.	21.3	21.3	2.64	
•								

1	1-143	2406.00	430.	401.	23.5	23.5	2.64	
1	1-144	2406.50	207.	189.	19.9	19.9	2.66	8.1
1	1-145	2407.00	554.	520.	24.2	24.1	2.64	
1	1-146	2407.47	420.	391.	24.3	24.3	2.64	
1	1-147	2408.00	581.	546.	24.2	24.2	2.64	
1	1-148	2408.50	161.	146.	18.6	18.5	2.64	
1	1-149	2409.00	212.	194.	22.8	22.8	2.64	9.4
1	1-150	2409.50	326.	302.	23.6	23.6	2.64	
1	1-151	2410.00	479.	448.	23.6	23.6	2.64	
1	1-152	2410.50	415.	386.	22.8	22.7	2.64	
1	1-153	2411.00	294.	271.	22.1	22.1	2.64	
1	1-154	2411.50	333.	308.	22.5	22.5	2.64	7.1
1	1-155	2412.00	207.	189.	21.3	21.3	2.64	
1	1-156	2412.50	203.	185.	21.3	21.3	2.65	
1	1-157	2413.00	305.	281.	24.0	23.9	2.64	
1	1-158	2413.50	264.	242.	22.6	22.6	2.64	
1	1-160	2414.50	257.	236.	22.4	22.4	2.64	7.9
1	1-161	2415.00	7.22	5.57	15.6	15.5	2.65	
1	1-162	2415.50	146.	131.	21.2	21.2	2.64	
1	1-163	2416.00	570.	535.	23.4	23.3	2.64	
1	1-164	2416.50	390.	362.	22.6	22.5	2.64	
1	1-165	2417.00	367.	341.	22.6	22.5	2.64	7.4
1	1-166	2417.50	387.	360.	22.7	22.6	2.65	7.4
1	1-167	2418.00	327.	302.	22.0	22.0	2.64	
1	1-168	2418.50	341.	316.	22.0	22.0	2.64	
1	1-170	2419.50	9.97	7.83	16.0	16.0	2.65	
1	1-170	2413.30	3.37	7.00	10.0	10.0	2.00	
1	171QL	2420.00	289.	266.	21.4	21.4	2.64	
1	1-172	2420.50	253.	232.	20.6	20.5	2.64	8.1
1	1-173	2421.00	425.	396.	22.8	22.7	2.64	
1	1-174	2421.50	497.	465.	23.6	23.5	2.64	
1	1-175	2422.03	513.	480.	23.8	23.8	2.64	
1	1-176	2422.50	297.	274.	21.9	21.8	2.64	
1	1-178	2423.50	228.	208.	21.7	21.7	2.64	9.1
1	1-179	2424.00	267.	245.	21.9	21.9	2.64	2
1	1-180	2424.50	91.1	80.4	21.7	21.7	2.64	
1	1-181	2425.00	270.	248.	22.6	22.5	2.64	
1	1-182	2425.50	339.	314.	23.0	23.0	2.64	
1	1-183	2426.00	534.	500.	24.5	24.4	2.64	9.8
1	1-184	2426.50	275.	253.	22.2	22.2	2.64	0.0
1	1-185	2427.00	477.	446.	24.4	24.4	2.64	
1	1-186	2427.50	216.	197.	21.9	21.9	2.64	
1	1-187	2428.00	465.	435.	23.7	23.7	2.64	
1	1-188	2428.50	466.	435.	22.6	22.4	2.64	20.0
1	1-189	2429.00		400. 360.	22.0	22.4	2.64	20.0
1	1-190	2429.50	507. 503.	471.	23.3	23.3	2.64	
1	1-190	2429.93	451.	471.	23.3	23.3	2.64	
	1-131	2723.33	т .).	421.	20.2	20.1	2.04	
		Average		_	_		_	_
		values:	263.	243.	21.0	21.0	2.65	9.9
I								

2.3.1.2 Petrophysical Analysis Methodology

Porosity/Permeability Relationships

The routine core analysis data was depth shifted to tie with the wireline logs, then used to calibrate porosity logs and establish a porosity/permeability relationship for the Ben Nevis sand (Figure 2-32).

Figure 2-32 K-15 Porosity/Permeability Relationship

Volume of Shale

The volume of shale has been calculated using the wellbore and mud weight corrected spectral Gamma Ray Log. A frequency plot (Figure 2-33) of the corrected Gamma Ray log through the Ben Nevis sand was used to determine the GR clean sand and GR shale end points used in the analysis.

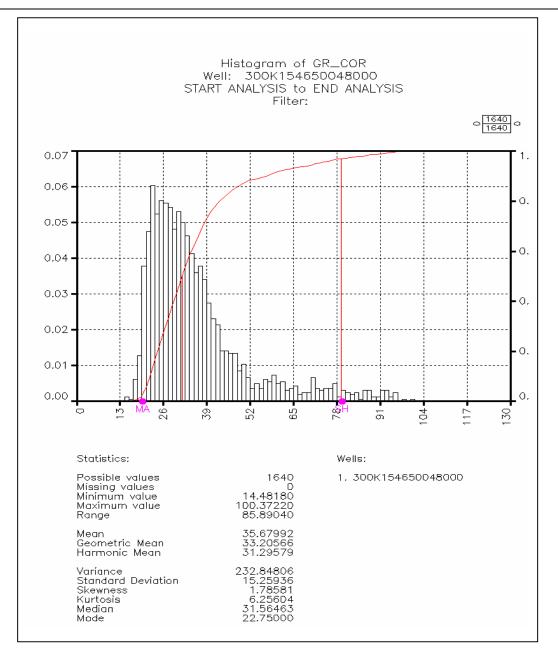


Figure 2-33 GR Frequency Histogram for the Well K-15

Effective Porosity

The effective porosity was calculated using the density porosity log corrected for shale volume. The calculated porosity was adjusted to tie with core porosity values to correct the density porosity for the Hydrogen Index over the gas zone. The final computed density porosity matches very well with the core values throughout the reservoir and is also a very good match to the CMR effective porosity over the oil and water legs.

Water Saturation

Given the low clay content of the reservoir rock, as seen from wireline logs and core samples, a simple Archie relationship was used to derive formation water saturations where a=1, m=2 and n=2. The calculated water saturation was a good match with the core Dean-Stark water saturations.

Another critical input in the Archie water saturation calculation is the formation water resistivity (Rw). The value calculated is Rw=0.1 @ 25 °C and was determined from the analysis of the water sample recovered by the MDT (Figure 2-34).

Ma	Analytics)					WATER	ANALYSIS
		Sample Point I.D	Cient/.D.		Meter Num	ber	A709313:	
HYCAL ENE	RGY RESEARCH				180		WellID	
HUSKY AME	ETHYST				N/A		HYCAL	
Well Name					Name of Sample , H2O 2535 MPSR	r	Company GLASS	
Field or Area		Pool or Zone		Sample	e Poènt		Container Identity	Percent Full
Test Recovery	F	interval f in	terval 2 Interv	w/3	Elevations (m)	Sample Gathering Point		Solution Gas
Test Type No.	Multiple Recovery Production Reles	Te:	Gauge Pressures KPa	КB	GRD	Well Fluid Status	West Stat	
				_	23.0	Well Status Type	Weil Typ	
Weber m34	O∦m3⊎ Ges	1000m34/ Source	2007/03/09	2007/03/		Gas or Condensate Proj	BP .MC3,DT2	Vo.
Date Sampled Start	Date	Sampled End	Date Received	Date Reports			Analyst	
	CATIONS	5		ANIONS		. т	tal Dissolved Solids (
lon	mg/L	meq/L	lon	mg/L	meq/L	58500	58800	
Na	20800	906	CI	35000	994	Measured	Catulat	
к	336	8.6	нсоз	552	9.0	1.044	1.340	
Ca	1770	88.4	SO4	24	0.5	Relative Density 100000	Reflectiv 0.10	e Inder
Mg	308	25.3	CO3	<0.5	<0.1	Condustivity (uSI	trii) Resistivi	(y (ohms) @25°C
Ba	18.0	0.3	ОН	<0.5	<0.1	5700 Total Hardness a	e CaCO3 (mpt.) Total AS	alinity as CeCO3 (mplt.)
Sr	318	7.2				73.9 Tatel Fe (mpl.)	1.63 Total Mit	. (mm. #)
Fe	3.70	0.13				6.87	ABSE	
H+						Coserved pH	M2S Spo	t Test
		Logarith	mic Pattern	s of Dissolved	lons (meq/L)			
	,	2 1		4	0		2 3	
Na 10 ⁴ 10 ³ 10 ² 10 ¹ 10 ⁰ 10 ⁻¹ 10 ⁰ 10 ¹ 10 ² 10 ³ 10 ⁴ Ca Mg								
Fe IIII								
								000
Remarks:			info	xmusion not supplied by d	ient – data derived from LSD inf	or=2:01	Mesuli	is relate only to items tested
CALGARY 2021-41 A	venue N.E., Calgary,Canada T2E Street. Edmonton. Canada T6B 2	6P2 Tel: (483) 201-3877 Fax (483) 21 R4 Tel: (780) 468-3500 Fax (788) 44	1-5463 GFV 8-3560 STE	WDE PRAIRE \$101, 7012 - 88 S TTLER Bay 6, 4715 - 42 Stree	innel, Clainnont, Canada TBH 880 Tel 6. Steffer: Canada TBC2L0 Tel: 14	: (780) 532-6227 Fax (780) 532-6 89 742-1107 Fax (485) 742-6170	28	2007/03/12 11:47

Figure 2-34 Water Analysis Report for K-15

Permeability

The permeability values were derived using the equation listed below. This equation is the core porosity/permeability relationship listed in Figure 2-32.

$$K = 10 \left(\begin{array}{c} -10 & .23 & +137 & .76 & f & -520 & .82 & f & ^2 & +708 & .79 & f & ^3 \end{array} \right)$$

Hydrocarbon Net Pay Criteria

Following are the net reservoir and pay criteria from the core White Rose field:

Reservoir Cut-offs:

Porosity cut-off: 10% Permeability cut-off: 3md Shale volume cut-off: 30%

Pay Cut-offs:

Porosity cut-off: 10% Permeability cut-off: 3md Shale volume cut-off: 30% Water saturation cut-off: 50%

Reservoir Porosity and K_Air Permeability - Overburden Compaction Factor

Standard core analysis may incorporate systematic errors in porosity because these values are measured at low pressure (e.g. 2758 Kpa), which leads to an over-estimation of porosity. At surface conditions pore volumes tend to expand with the decrease in confining pressure. Additional core analysis was undertaken to correct for the overburden.

Porosity and permeability measurements were taken on 13 core plugs from White Rose A-17 and N-30 wells. This work was carried out by Hycal Laboratories as a supplement to special core analysis work. Using CMS-300 equipment, measurements were taken using a series of increasing pressures intended to simulate and span reservoir pressures existing in the White Rose field.

The resulting data series have been trended to extract equations. These equations link the decrease in reservoir porosity and permeability to an increase to overburden or reservoir-equivalent pressures, and to the original porosity and permeability of each sample. These equations will provide the basis for adjusting all "as measured" lab porosities and permeabilities to those representing the same rock under reservoir conditions.

Work Method:

Hycal measured the porosity and permeability for each plug at requested overburden pressures of 800, 1740, 3480, 5370 and 7250 psi (Table 2-11). Rock and pore volume varied, plug by plug and acted to reduce this pressure by a small amount. These overburden pressures were converted to kPa. The overburden pressures applied for the permeability calculations are different than those applied for the porosity calculations.

These plugs have previously been measured by Core Laboratories under routine or lab conditions, however Core Lab routinely uses 400 psi seating pressure. The Core Lab values of porosity and permeability were added to the values in Table 2-11 to see whether the values were in the right range, and whether there was any systematic difference between the "routine" values reported by Core Lab and Hycal (Figure 2-35).

These systematic differences in methodology were found to exist. The Hycal porosities and permeabilities measured at 800 psi were higher than the Core Lab values measured on the same plugs at a lower seating pressure of 400 psi.

Sample I.D.	Depth	Requested Overburden psi	Act. Overbur. During Pore Vol psi	kpa	Pore Volume cc	Porosity 1 %	Act. OverBur. During Perm psi	kpa	Air Perm md
Core Lab Value	29		400	2758		17.7	400	2758	96.8
880803	29	800	746	5143.67	12.6111	17.78	896	6177.92	117.32
880803	29	1740	1610	11100.95	12.4305	17.57	1756	12107.62	116.51
880803	29	3480	3318	22877.61	12.2852	17.4	3463	23877.385	113.83
880803	29	5370	5153	35529.935	12.1806	17.28	5306	36584.87	111.83
880803	29	7250	6989	48189.155	12.112	17.2	7151	49306.145	110.41

Table 2-11 Hycal and Core Lab Measurements

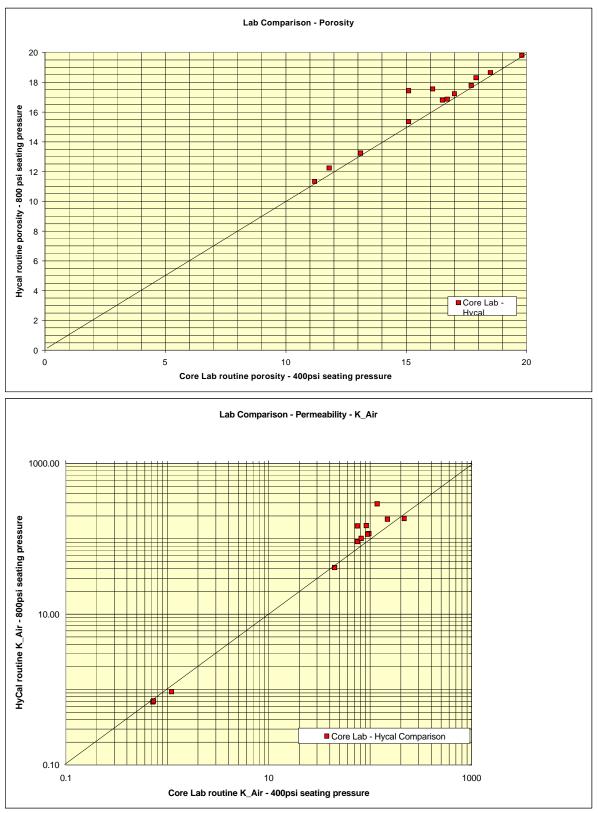


Figure 2-35 Core Lab - Hycal Comparison

Overburden Correction:

Core porosity and permeability at low pressure versus core porosity and permeability at simulated overburden pressure is shown in Figures 2-36 and 2-37.

Core porosity measured under laboratory conditions when applying 400 psi or 2758 kPa seating pressure (Core Lab practice) should be adjusted using the following equation:

Retained Porosity 20 18 16 Porosity - Reservoir conditions (30, 000 kPA) Revised 14 1.0191x - 0.8695 $R^2 = 0.999$ 12 10 8 6 Previous -0.0027x² + 1.1033x - 1.4986 $R^2 = 0.9991$ 4 All Points 2 0 0 5 10 15 20 Porosity - Lab (seating) conditions

f @ 30.000 Kpa = 1.0191 (f @ 2758 Kpa) - 0.8695

Figure 2-36 Core Porosity and Permeability at Low Pressure

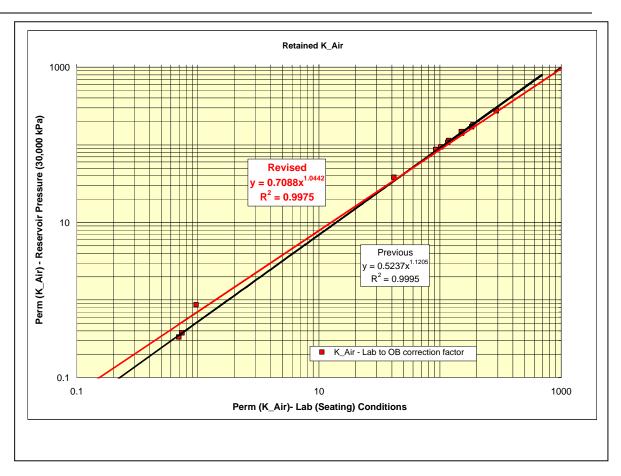


Figure 2-37 Core Porosity and Permeability at Simulated Overburden Pressure

For the 13 samples analyzed, the reservoir porosity averaged 96.5% of laboratory values.

Core permeability measured under laboratory conditions when applying 400 psi or 2758 kPa seating pressure (Core Lab practice) should be adjusted using the following equation:

$$K @ 30,000 \ Kpa = 0.7088 \ (K @ 2758 \ Kpa)^{1.0442}$$

For the 13 samples measured, the reservoir permeability averages 87.2% of laboratory values.

Methods used in the Petrophysics of the WhiteRose Field Permeability Calculation

Figure 2-38 illustrates the core porosity-permeability relationship for all the wells in the White Rose Field that have a core sample.

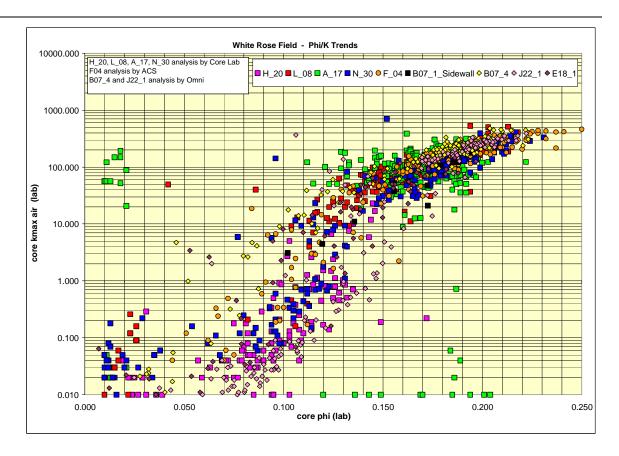


Figure 2-38 Core Porosity-Permeability Relationship for White Rose Wells

Husky's standard practice is to correct the core porosity and permeability for the overburden pressure and link the core permeability with other attributes such as porosity and depositional facies.

In Figure 2-39 the porosity-permeability relationship shows two different trends; one mainly for the better laminated sand (colored in blue) and the second trend for the bioturbated sand facies (colored in green). The generated permeability from the porosity and given deposition facies assignment is illustrated in the following equations:

For shale, bioturbated sand, calcite:

$$k = 10 \left(\begin{array}{c} -2.1890 & +0.567 \\ \end{array} \right) + 84 \cdot 1 \int \left(\begin{array}{c} 2 + 656 \\ \end{array} \right) \cdot 31 \int \left(\begin{array}{c} 3 \\ \end{array} \right)$$

For laminated sand:

$$k = 10 \left(\begin{array}{c} -2.301 + 40.02 \text{ f} - 84.056 \text{ f} \end{array} \right)$$

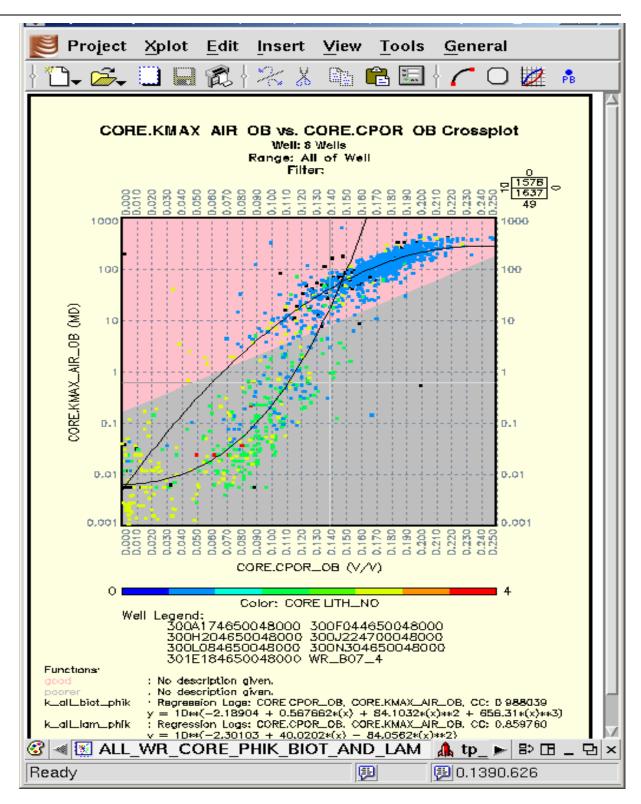


Figure 2-39 Porosity-Permeability Relationship

Formation Water Resistivity

The water salinity was determined using the modular dynamic tester water samples gathered in the well L-08. The samples were obtained using the optical fluid analyzer and resistivity measurement to minimize the mud filtrate contamination.

Table 2-12 indicates the values obtained for each sample. At 25°C, the resistivities varied from a low of 0.212 to a high of 0.565 ohm-m. Sample number 208 was used because this sample indicated the lowest PH above 7.

									<u> </u>	
									Corrected	Corrected
		Sample	Mud	Sample	Contam	Contam			Formation	Formation
Sample	Sample	Tritium	Tritium	Tritium	Sample	Sample	Sample	Mud	Salinity	Resistivity
#	Depth	Conc	Conc	Contam	Rw@25	Conc	pН	Salinity	PPM	Rw @ 25
	(m)	(pCi/ml)	(pCi/ml)	(%)	(ohm-m)	(ppm)		(ppm)	(ppm)	(ohm-m)
199	3047	10874	42345	25.7	0.135	47,100	8	133,267	17,327	0.339
311	3047	10294	42345	24.3	0.156	39,960	8	133,267	9,992	0.565
315	3047	9722	42345	23.0	0.144	43,746	8	133,267	17,068	0.344
208	3094.5	2853	38058	7.5	0.171	36,000	7.7	133,267	28,118	0.218
233	3094.5	2870	38058	7.5	0.167	36,972	7.8	133,267	29,118	0.212
248	3094.5	2970	38058	7.8	0.173	35,500	7.9	133,267	27,225	0.224

Table 2-12 Values from Formation Water Testing

Note: The Rw used for the Avalon field study was 0.218 @ 25°C, 0.082 @ Formation Temperature of 100°C, which is 28,118 NaCl equivalent.

Electrical Properties M and N

Special core analyses were undertaken using core from L-08 to determine the correct cementation exponent "M" and saturation exponent "N" to be used in determining water saturation using the log evaluation software.

The reported average values for M and N, using an 'a'=1 are:

The Cementation exponent M=1.78 The Saturation exponent N=1.86

Knowing the M and N values will allow use of the Pickett Plot in the water leg to determine the formation water resistivity.

3.0 Reservoir Engineering

3.1 Basic Reservoir Data

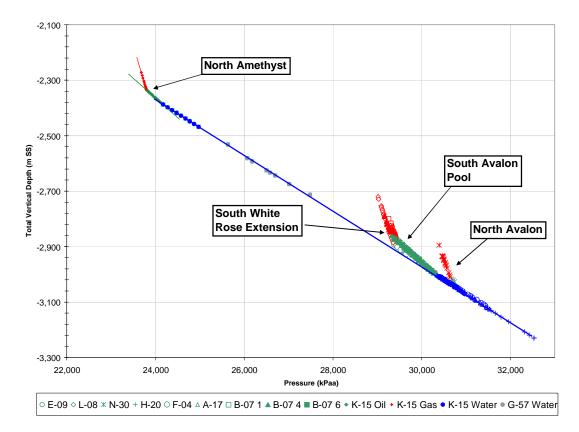
3.1.1 Reservoir Pressures and Temperatures

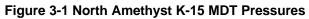
A full set of reservoir pressures were obtained using Schlumberger's MDT (modular dynamic formation tester) tool in the North Amethyst K-15 well. The reservoir pressure observed at the K-15 well was 23,800 kPa @ 2,333 mTVDss. The reservoir temperature

detected during logging the K-15 well was approximately 88 °C. The MDT pressure data indicated gas-oil and oil-water contact depths of 2,333.9 mTVDss and 2,386.39 mTVDss, respectively. The gas-oil and oil-water contacts were also confirmed from logs. Table 3-1 compares the K-15 fluid contacts with the fluid contacts evident in the greater White Rose region.

The gas, oil and water gradients observed at the K-15 well were 1.83 kPa/m, 7.01 kPa/m and 9.90 kPa/m, respectively. These values are similar to the fluid gradients seen elsewhere in the White Rose area as indicated in Table 3-2. The pressure elevation plot for the K-15 well is illustrated in Figure 3-1.

In addition to MDT data, two vertical interference tests and one mini-DST test were performed with the MDT tool in the K-15 well (Appendix A). These tests were designed to assess vertical communication, permeability and skin values in the formation. The results of the tests indicated reservoir permeability in the range of 155 to 450 md. The tests also indicated that the ratio of vertical permeability to horizontal permeability is higher than 0.12. All of the tests conducted indicted almost a zero skin factor. The results of the two vertical interference tests at 2,390 m and 2,415 m are indicated in Tables 3-3 and 3-4, respectively. Table 3-5 shows the results of the dual packer mini-DST test conducted at 2,400 m.


Table 3-1 Fluid Contacts, White Rose Region							
Well	Formation	Contact	Log Depth	Subsea Depth			
			(m TVD)	(m SS TVD)			
L-61	Ben Nevis	Oil/Water					
L-61	Ben Nevis	Top of Transition	2986	2963.1			
L-61	Ben Nevis	Bottom of Transition	3007	2984.1			
N-22	Hibernia	Oil/Water	3631.3	3603.6			
J-49	Ben Nevis	Gas/Oil	3092.6	3069.7			
J-49	Ben Nevis	Oil/Water	3154	3131.1			
N-30	Ben Nevis	Gas/Oil	3039.2	3014.2			
		Gas/Oil					
H-20	Ben Nevis	(Estimated)	2901.3	2874.9			
H-20	Ben Nevis	Oil/Water					
H-20	Ben Nevis	Top of Transition	3016.7	2990.3			
H-20	Ben Nevis	Bottom of Transition	3027.2	3000.8			
E-09	Ben Nevis	Gas/Oil	2894.8	2871.8			
E-09	Ben Nevis	Oil/Water					
E-09	Ben Nevis	Top of Transition	3013	2990			
E-09	Ben Nevis	Bottom of Transition	3032.5	3009.5			
L-08	Ben Nevis	Gas/Oil	2897	2872			
L-08	Ben Nevis	Oil/Water	2097	2012			
L-08	Ben Nevis	Top of Transition	3014	2989			
L-08	Ben Nevis	Bottom of Transition	3034.5	3009.5			
A-17	Ben Nevis	Gas/Oil	2899.7	2874.7			
A-17	Ben Nevis	Oil/Water					
A-17	Ben Nevis	Top of Transition	3010	2985			
A-17	Ben Nevis	Bottom of Transition	3024.5	2999.5			
J-91	Ben Nevis	Wet	-	-			
F-04	Ben Nevis	Gas/Oil	2910.5	2887.5			
F-04	Ben Nevis	Oil/Water					
F-04	Ben Nevis	Top of Transition					
F-04	Ben Nevis	Bottom of Transition					
E 0.47	Den Mult	0/01					
F-04Z	Ben Nevis	Gas/Oil	2004.0	0000.0			
F-04Z F-04Z	Ben Nevis Ben Nevis	Oil/Water Top of Transition	2991.3	2968.2			
		Bottom of					
F-04Z	Ben Nevis	Transition					
B07_1	Ben Nevis	Gas/Oil	2895	2872			
B07_1 B07_1	Ben Nevis	Oil/Water	2030	2012			
B07_1	Ben Nevis	Top of Transition		1			
B07_1	Ben Nevis	Bottom of					
U	Dell INEVIS	Transition					


Table 3-1 Fluid Contacts, White Rose Region

Well	Formation	Contact	Log Depth	Subsea Depth
wen	Formation	Contact	(m TVD)	(m SS TVD)
B07_2	Ben Nevis	Gas/Oil		(11 33 1 4 2)
B07_2 B07_2	Ben Nevis	Oil/Water	horizontal producer	
B07_2 B07_2	Ben Nevis	Top of Transition	nonzoniai producei	
		Bottom of		
B07_2	Ben Nevis	Transition		
		Transition		
B07_4	Ben Nevis	Gas/Oil	2882	2858.94
B07_4	Ben Nevis	Oil/Water	2002	2030.94
B07_4 B07_4	Ben Nevis	Top of Transition		
B07_4	Dell News	Bottom of		
B07_4	Ben Nevis			
		Transition		
B07 6	Ben Nevis	Gas/Oil		
B07_6	Ben Nevis	Oil/Water	3021.5	2998.5
			3021.3	2990.0
B07_6	Ben Nevis	Top of Transition Bottom of		
B07_6	Ben Nevis			
		Transition		
D07.0	Den Neule	0.55/0:1		
B07_3	Ben Nevis	Gas/Oil Oil/Water	harizantal producer	
B07_3	Ben Nevis		horizontal producer	
B07_3	Ben Nevis	Top of Transition Bottom of		
B07_3	Ben Nevis			
		Transition		
D07 5	Ben Nevis	Gas/Oil		
B07_5		Oil/Water	harizantal producer	
B07_5 B07_5	Ben Nevis Ben Nevis	Top of Transition	horizontal producer	
BU7_5	Den News	Bottom of		
B07_5	Ben Nevis	Transition		
		TIANSILION		
B07_8	Ben Nevis	Gas/Oil	2894.54	2871.54
0	Ben Nevis	Oil/Water	3015.62	2992.62
	Ben Nevis	Top of Transition	3013.02	2992.02
		Bottom of		
	Ben Nevis	Transition		
		Transition		
B07_9	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water	water injector	
	Ben Nevis	Top of Transition	water nijeeter	
		Bottom of		
	Ben Nevis	Transition		
		Tanonion		
J22_1	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water		
	Ben Nevis	Top of Transition		
		Bottom of		
	Eastern Shoals	Transition		
E18 1	Ben Nevis	Gas/Oil	2895.6	2872.6
	Ben Nevis	Oil/Water	3032.07	3009.07
	Ben Nevis	Top of Transition		
		Bottom of		
	Ben Nevis	Transition		
L				

Well	Formation	Contact	Log Depth	Subsea Depth
			(m TVD)	(m SS TVD)
E18_2	Ben Nevis	Gas/Oil	. ,	
	Ben Nevis	Oil/Water	horizontal producer	
	Ben Nevis	Top of Transition		
	D. N. I.	Bottom of		
	Ben Nevis	Transition		
E18_3	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water	horizontal injector	
	Ben Nevis	Top of Transition	•	
	Ben Nevis	Bottom of		
E18_4	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water	horizontal producer	
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
E18_5	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water	horizontal injector	
	Ben Nevis	Top of Transition	· · ·	
	Ben Nevis	Bottom of		
E18_6	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water	horizontal producer	
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
E18_7	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water	horizontal injector	
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
B-19	Ben Nevis	Gas/Oil	2871.9	2824.9
	Ben Nevis	Oil/Water	2999.9	2952.9
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
B-19Z	Ben Nevis	Gas/Oil	2893.56	2846.56
	Ben Nevis	Oil/Water	3004.81	2957.81
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
O-28Y	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water	3217.09	3170.09
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
		_		
O-28X	Ben Nevis	Gas/Oil		
	Ben Nevis	Oil/Water		
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		
K-15	Ben Nevis	Gas/Oil	2380.9	2333.9
	Ben Nevis	Oil/Water	2433.39	2386.39
	Ben Nevis	Top of Transition		
	Ben Nevis	Bottom of		

Table 3-2 White Rose Fluid Gradients						
Well	Reservoir Gas Gradient (kPa/m)	Reservoir Oil Gradient (kPa/m)	Reservoir Water Gradient (kPa/m)	PVT Live Oil Gradient (kPa/m)		
A-17	1.71	6.96	9.71	7.07		
L-08	2.11	6.98	9.69	7.06		
E-09	2.28	7.09	9.81	6.85		
H-20	n/a	6.15	9.67	n/a		
B-07 1	2.13	6.84	n/a	n/a		
B-07 4	2.06	6.92	n/a	n/a		
B-07 6	n/a	7.18	10.22	n/a		
N-22	1.99	n/a	n/a	n/a		
N-30	2.26	6.70	n/a	n/a		
J-22 1	2.05	n/a	n/a	n/a		
F-04	2.06	7.23	n/a	n/a		
O-28Y	n/a	6.98	9.70	7.19		
K-15	1.83	7.01	9.90	7.10		

I able	Table 3-3 North Amethyst K-15 Vertical Interference Test at 2,390 m						
kh k∨		kv/kh	Skin	Reservoir pressure at			
(md)	(md)			2,390 m (kPa)			
450	70	0.16	0.0	23883.57			

Table 3-3 North Amethyst K-15 Vertical Interference Test at 2,390 m

Table 3-4 North Amethyst K-15 Vertical Interference Test at 2,415 m

kh (md)	k∨ (md)	kv/kh	· · · · · · · · ·	Reservoir pressure at 2,415 m (kPa)
302	42	0.14	0.0	24036.06

Table 3-5 North Amethyst K-15 Dual Packer Mini DST at 2,400 m

kh (md)	kv (md)	kv/kh		Reservoir pressure at 2,400 m (kPa)
155	18	0.12	0.1	23953.35

3.1.2 Fluid Characterization

A full suite of reservoir fluid samples were obtained in the K-15 well. Six oil samples, three gas samples and three water samples were recovered. Two separator flash tests and one differential liberation test were conducted on the oil samples obtained from the K-15 well (Appendix B). These tests indicated a bubble point pressure between 20,830 and 21,100 kPa. Since the North Amethyst structure is shallower than the South White Rose Pool, the saturation pressure of the oil at North Amethyst is lower than the saturation pressure of 29,400 kPa observed in the South White Rose Pool. Extrapolation of the bubble point pressure observed at the K-15 well, down to the depth of the South White Rose Pool, indicates that the bubble point pressure of the fluids appear to be consistent. A summary of the multi-stage separator and differential liberation analysis conducted on the oil samples are provided in Tables 3-6 and 3-7. Figures 3-2 through 3-5 illustrate the oil formation volume factor, gas-oil ratio, viscosity and density for the K-15 differential liberation fluid study conducted on sample 1365.

Table 3-6 North Amethyst K-15 Wulti-Sta	ige Separator Fluid	Oll PVT Summary
Sample:	1364	1239
Sample Type:	Bottomhole	Bottomhole
Sample Date:	2-Nov-06	2-Nov-06
Sample Depth (mMD):	2390	2415
Reservoir Temperature (°C):	88.1	88.4
Saturation Pressure (kPa):	20,830	21,100
Initial Reservoir Pressure (kPa):	23,850	24,030
Solution Gas-Oil Ratio (m3/m3)*:	97.65	100.97
Oil Formation Volume Factor (res m ³ /m ³)*:	1.278	1.297
Oil Density (kg/m³)*:	733.1	724.1
API Gravity:	34.8	35.0
Compositional Analysis:		
N2 mole fraction:	0.0028	0.0137
CO2 mole fraction:	0.0116	0.0150
H2S mole fraction:	0.0000	0.0000
C1	0.4361	0.4307
C2	0.0393	0.0382
C3	0.0271	0.0270
i-C4	0.0056	0.0056
n-C4	0.0161	0.0162
i-C5	0.0068	0.0069
n-C5	0.0107	0.0109
C6	0.0165	0.0169
C7	0.0179	0.0179
*property at saturation pressure at reservoir t	temperature.	

Table 3-6 North Amethy	vst K-15 Multi-stage	Separator Fluid Oil PVT Summary
Table 5-0 North Ametin	ysi n-is mulli-slage	Separator Fluid On FVT Summary

"property at saturation pressure at reservoir temperature.

Sample:	1365
Sample Type:	Bottomhole
Sample Date:	2-Nov-06
Sample Depth (mMD):	2390
Reservoir Temperature (°C):	88.1
Saturation Pressure (kPa):	20900
Initial Reservoir Pressure (kPa):	23860
Solution Gas-Oil Ratio (m3/m3)*:	105.79
Oil Formation Volume Factor (res m ³ /m ³)*:	1.3208
Oil Density (kg/m³)*:	722.6
API Gravity:	33.8
Compositional Analysis:	
N2 mole fraction:	0.0017
CO2 mole fraction:	0.0122
H2S mole fraction:	0
C1	0.4349
C2	0.0408
C3	0.0281
i-C4	0.0058
n-C4	0.0168
i-C5	0.0076
n-C5	0.0117
C6	0.0174
C7	0.0181
*property at saturation pressure at reservoir t	emperature.

 Table 3-7 North Amethyst K-15 Differential Liberation Oil PVT Summary

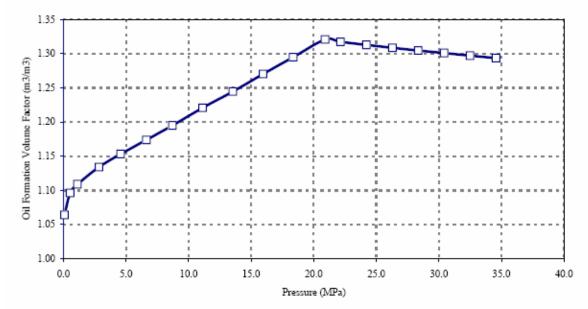


Figure 3-2 North Amethyst K-15 Differential Liberation Oil Formation Volume Factor @ 88.1 °C

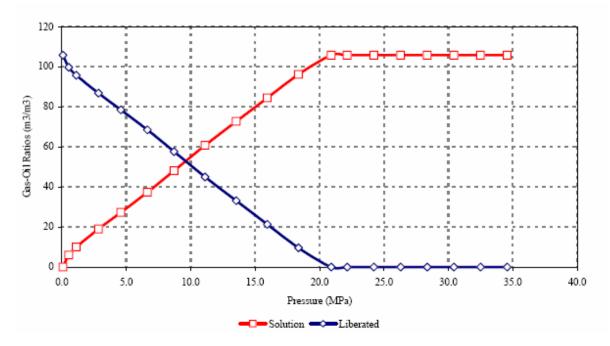


Figure 3-3 North Amethyst K-15 Differential Liberation Gas-Oll Ratio @ 88.1 ⁰C

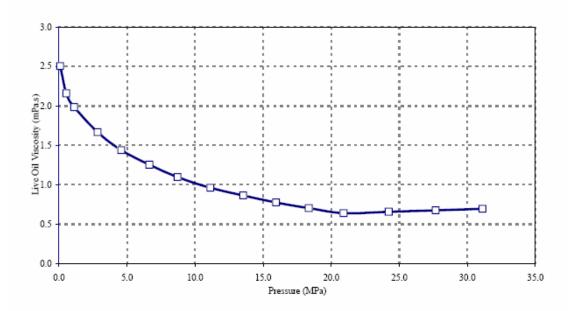


Figure 3-4 North Amethyst K-15 Differential Liberation Oil Viscosity @ 88.1 °C

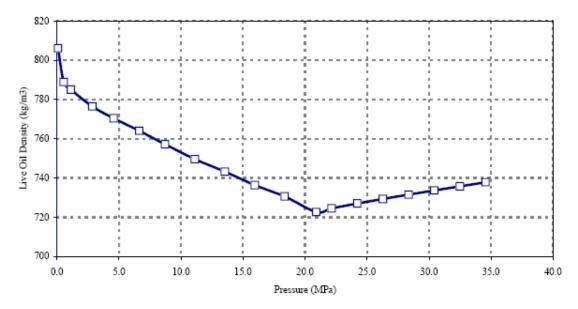


Figure 3-5 North Amethyst K-15 Differential Liberation Oil Density @ 88.1 °C

PVT analysis was also conducted on a gas sample from the gas cap at the K-15 well. The PVT properties of the gas zone at K-15 are very similar to other gas samples in the White Rose field. The PVT fluid study results for the gas at the K-15 well are summarized and compared to other White Rose wells in Table 3-8.

Water compositional analysis was also conducted on two of the water samples taken from the K-15 well. Table 3-9 summarizes the results of the K-15 water compositional analysis.

	I able 3-0	North Amet	iiyst K-15 (3d5 F V I	
	N-30	J-22 1	J-22 1	F-04	K-15
Sample Type	Bottom Hole - MDT	Bottom Hole - MDT	Recombined Sep	Bottom Hole - MDT	Bottom Hole - MDT
Sample ID	248-06	MPSR 1359	1206 / 14002-QA	MPSR 1363	MPSR 1476
Sample Depth (m MD)		2851.3	Separator	2826.8	2375
Mud System	WBM	SBM	SBM	WBM	SBM
Reservoir Temp (°C)	106	106	106	101	88
Dew Point (kPa)	30,660	30,340	28,463	29,470	21,970
Z Factor*	0.9728	0.9131	0.9740	0.9250	0.9044
Viscosity (cP)*	0.0252	0.0240	n/a	0.0243	0.0201
Density (g/cm3)*	0.2141	0.2256	0.1860	0.2044	0.1641
MW	21.41	21.40	20.48	20.96	20.64
CGR (m ³ / 10 ⁶ m ³)	182.75	183.52	159.74	150.73	102.6
CGR (stb/mmscf)	32.55	32.69	28.46	26.85	18.27
N ₂ mole fraction	0.0013	0.0037	0.0052	0.0052	0.0052
CO ₂ mole fraction	0.0153	0.0130	0.0108	0.0134	0.0161
H ₂ S mole fraction	0.0000	0.0000	0.0000	0.0000	0.0000
C1 mole fraction	0.8924	0.8787	0.8819	0.8743	0.8813
C2 mole fraction	0.0389	0.0412	0.0429	0.0431	0.0398
C3 mole fraction	0.0185	0.0215	0.0230	0.0241	0.0198
i-C4 mole fraction	0.0032	0.0033	0.0035	0.0039	0.0031
n-C4 mole fraction	0.0074	0.0097	0.0087	0.0096	0.0077
i-C5 mole fraction	0.0015	0.0018	0.0024	0.0023	0.0022
n-C5 mole fraction	0.0024	0.0030	0.0034	0.0036	0.0029
C6 ⁺ mole fraction	0.0191	0.0241	0.0183	0.0205	0.0218
C6 ⁺ MW	183.40	138.46	n/a	127.94	117.88
C6 ⁺ density (g/cm ³)	0.8417	0.7920	n/a	0.7700	0.7752

Table 3-8 North Amethyst K-15 Gas PVT

*property at dew point at reservoir temperature.

	K-15	K-15	
Sample Type	Bottom Hole - MDT	Bottom Hole - MDT	
Sample ID	1682 MPSR	2535 MPSR	
Sample Depth (m MD)	2,515	2,515	
Total Disolved Solids (mg/l):	57,500	58,500	
pH:	6.9	6.9	
Cations / Anions:	mg/l	mg/l	
Na	21,200	20,800	
K Ca	369	336	
Са	1,760	1,770	
Mg	324	308	
Ва	15.5	18.0	
Sr	233	318	
Fe	1.69	3.70	
CI	35,000	35,000	
HCO3	508	552	
SO4	30	24	
CO3	<0.5	<0.5	
ОН	<0.5	<0.5	

Table 3-9 North Amethyst K-15 Water Compositional Analysis

At the time when the Eclipse simulation model was constructed for North Amethyst, the final results of the PVT analysis were not available. A table of PVT properties was constructed based on preliminary analysis of the three bottom-hole fluid samples 1364, 1239 and 1365. The PVT correlation package in the MBAL (material balance), software of Petroleum Experts, was used to construct a PVT table which was used in the Eclipse simulation model, as shown in Table 3-10. The PVT properties that were used in the

reservoir simulation model were subsequently confirmed with the final PVT analysis results, therefore the initial assumptions were deemed appropriate.

K15 s-stage	Test Separator Sar	nple "SN1206"	Correlation created			
Rs	Pressure	Bo	Oil Visc.	Pressure	Bg	Gas Visc.
(sm3/sm3)	(barsa)	(m3/Sm3)	(cp)	(bara)	(m3/Sm3)	(cp)
@ T = 88.4 d	leg.C. & Pb = 237.9	barsa (MDT Da	ata)			
0.0000	1.0000	1.0679	1.3419	1.0000	1.2580	0.0137
4.9257	19.2232	1.0769	1.2675	19.2232	0.0651	0.0138
11.1256	37.4464	1.0883	1.1830	37.4464	0.0329	0.0141
17.9406	55.6695	1.1009	1.1000	55.6695	0.0218	0.0144
25.1933	73.8927	1.1142	1.0213	73.8927	0.0162	0.0147
32.7917	92.1159	1.1282	0.9479	92.1159	0.0128	0.0152
40.6780	110.3390	1.1427	0.8800	110.3390	0.0106	0.0156
48.8128	128.5620	1.1577	0.8175	128.5620	0.0091	0.0161
57.1667	146.7850	1.1731	0.7603	146.7850	0.0079	0.0167
65.7178	165.0090	1.1888	0.7081	165.0090	0.0071	0.0172
74.4471	183.2320	1.2049	0.6604	183.2320	0.006385	0.017819
83.3406	201.4550	1.2213	0.6170	201.4550	0.0058	0.0184
92.3860	219.6780	1.2379	0.5776	219.6780	0.0054	0.0191
100.6410	237.9010	1.2527	0.5462	237.9010	0.0050	0.0197
100.6410	256.1240	1.2487	0.5558	256.1240	0.0047	0.0203
100.6410	274.3480	1.2453	0.5653	274.3480	0.0045	0.0210
100.6410	292.5710	1.2424	0.5749	292.5710	0.0043	0.0216
100.6410	310.7940	1.2398	0.5844	310.7940	0.0041	0.0223
100.6410	344.3000	1.2357	0.6020	344.3000	0.0038	0.0234

Table 3-10 North Amethyst K-15 PVT Correlations for Eclipse Reservoir Simulation

The PVT analysis results from the K-15 well indicate an average initial gas-oil ratio and formation volume factor of approximately 104 Sm³/Sm³ and 1.27 Sm³/Sm³, respectively. These results are within the range of the values that were used in the reservoir simulation model therefore the accuracy of the data used has been verified. Both the gas-oil ratio and formation volume factor observed at the K-15 well are lower than those in the remainder of the White Rose field. Average gas-oil-ratios and formation volume factors for the White Rose Field are approximately 137 Sm³/Sm³ and 1.39 Sm³/Sm³, respectively.

3.1.3 Reservoir Core Data

Significant core has been recovered from the Ben Nevis Avalon formations in the greater White Rose region. Table 3-11 illustrates the amount of conventional core as well as sidewall cores taken in all wells in the greater White Rose region to date.

New core has been recovered in the North Amethyst K-15 and O-28Y delineation wells. The acquisition of this new core has expanded the data set across the Ben Nevis Avalon region in the greater White Rose area.

White Rose Cores			all depths	ili depths are measured (metres)			
Well	Core Type		Start	Finish	Recovery	Formation	
A-17	Conventional	Core #1	2940.8	3047.0	106.3	Ben Nevis	
L-08	Conventional	Core #1	2843.0	2866.5		Ben Nevis	
L-08	Conventional	Core #2	2866.5	2883.5		Ben Nevis	
L-08	Conventional	Core #3	2883.5	2936.6		Ben Nevis	
L-08	Conventional	Core #4	2936.6			Ben Nevis	
L-08	Conventional	Core #5	3043.6	3061.9		Ben Nevis	
E-09	Sidewall	31partial recoveries				Ben Nevis	
E-09	Sidewall	122 recovered				Various	
H-20	Conventional	Core #1	2916.0	2966.0	50.0	Ben Nevis	
H-20	Conventional	Core #2	2966.0			Ben Nevis	
H-20	Conventional	Core #3	3022.0			Ben Nevis	
N-30	Conventional	Core #1	2954.0	3064.0		Ben Nevis	
N-30	Sidewall	10 recovered				Eastern Shoals	
N-22	Conventional	Core #1	3378.0	3396.0	18.0	Hibernia	
N-22	Conventional	Core #2	3565.0	3570.0		Hibernia	
N-22	Conventional	Core #3	3570.0	3580.5		Hibernia	
N-22	Sidewall	22 partial recoveries				Ben Nevis	
N-22	Sidewall	180 recovered				Various	
J-49	Conventional	Core #1	3096.5	3115.1	14.9	Ben Nevis	
L-61	Conventional	Core #1	3006.3			Ben Nevis/E. Shoals	
L-61	Conventional	Core #2	3257.7	3271.8		Eastern Shoals	
J-91	Sidewall	35 recovered				Nautilus/Ben Nevis	
F-04	Conventional	Core #1	2764.0	2818.0	53.3	Ben Nevis	
F-04	Conventional	Core #2	2818.0	2873.0		Ben Nevis	
F-04	Sidewall	45 recovered				Various	
B-07 1	Sidewall	32 recovered				Ben Nevis	
B-074	Conventional	Core #1	3844.0	3914.0	67.6	Ben Nevis	
B-074	Conventional	Core #2	3914.0	3935.7	22.0	Ben Nevis	
B-07 4	Conventional	Core #3	3935.7	3982.9	47.2	Ben Nevis/Hibernia	
J22-1	Conventional	Core #1	2780.1	2883.5		Ben Nevis	
E18-1	Conventional	Core #1	4149.0	4203.0	52.9	Ben Nevis/E. Shoals	
0-28Y	Conventional	Core #1	3406.4	3427.0		Ben Nevis	
0-28Y	Sidewall	25 recovered	3373.5			Ben Nevis/E. Shoals	
0-28X	Sidewall	25 recovered	3373.5			Ben Nevis/E. Shoals	
K-15	Conventional	Core #1	2335.3			Ben Nevis	
K-15	Sidewall	25 recovered	2323.0	2528.0		Ben Nevis/E. Shoals	

Table 3-11 Conventional and Sidewall Cores from the White Rose Region

Figure 3-6 illustrates a core-based porosity-permeability cross plot including the new data acquired from the K-15 well. This cross plot illustrates how the new data acquired at the K-15 well align very well with the previous data in the South Avalon pool and emphasizes the consistent facies relationship across the White Rose region. Table 3-12 summarizes the total core recovery in wells within the greater White Rose region.

A semi-log porosity-permeability correlation chart of the K-15 conventional core-analysis data was used to predict the air permeabilities at the location of K-15 well. The calculated air permeability was in the range of 200 mD to 800 mD within the oil and water sections. In the gas section, the permeability declines to within 10 mD to 500 mD

as more bioturbated intervals are encountered. The distribution of V-shale by depth indicates a cleaner sand, in particular within the oil and water zones, than that observed in the main South Avalon pool. A kv/kh ratio of 0.5 is currently assumed in the Eclipse reservoir simulation model. However, analysis of core data has suggested a kv/kh ratio higher than 0.5.

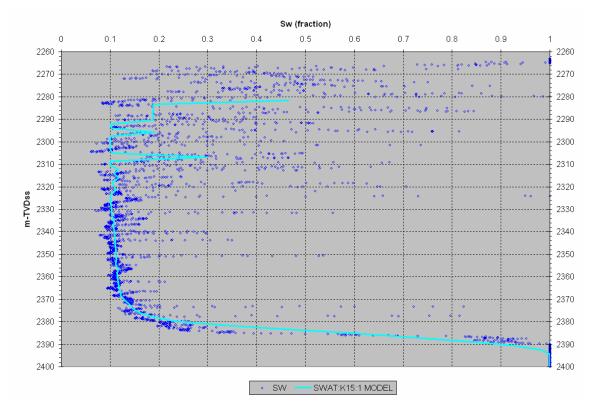
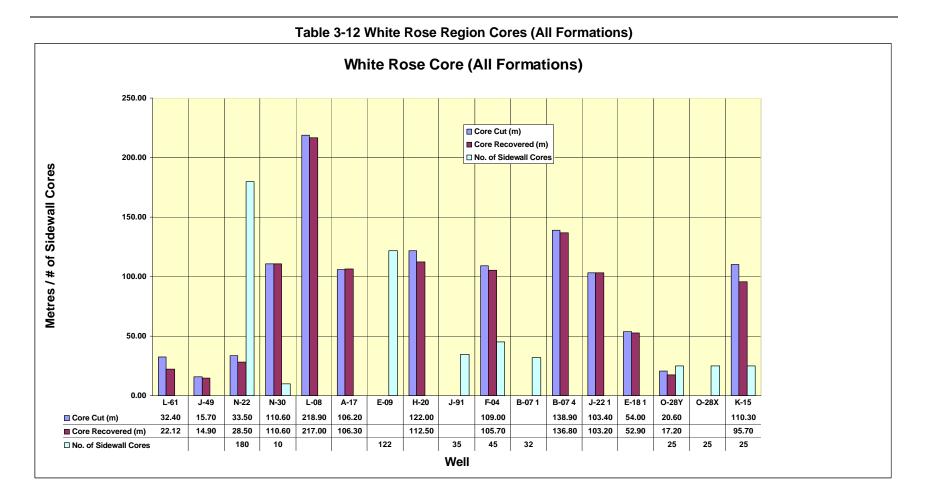



Figure 3-6 K-15 Sw Versus Depth: Log Data Versus Simulation Model

3.1.4 J Function Curves

The water saturation (Sw) calculated from J-curves at the location of K-15 was compared to the log Sw in Figure 3-7.

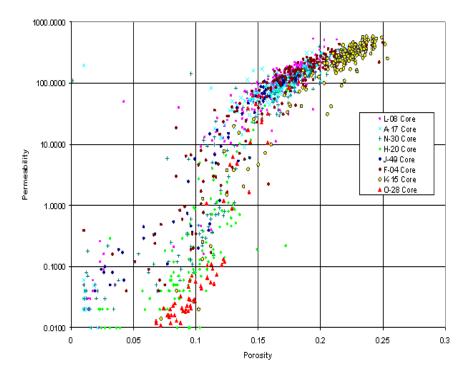


Figure 3-7 Core Porosity-Permeability Cross Plot, Delineation Wells, Greater White Rose Region

The "J" values were calculated from the log data of the K-15 well. Figure 3-8 demonstrates the "J" versus Sw plot for the values calculated from the K-15 log. The "J" values (calculated from logs) versus Sw values has suggested two major distinguished rock types: laminated and bioturbated. The following equation was used to generate the J curves:

$$J = P_c \left(\frac{K_{AIR}}{f}\right)^{1/2}$$

No surface tension was used.

$$P_c(at \, depth \, D) = 0.00981 \, (OWC \, m - D \, m) \left(\Delta \, \rho_{oW} \, kg/m^3 \right) = 0.00981 \, (OWC - D) \, (995.4 - 736.363)$$

These "J" versus "Sw" curves were normalized, using Sw values from 0 to 1, and were used in the Eclipse simulation model. However, some of the data points fall within a transition region on the plot. Most of these transition data points were given a flag of laminated rock-type in the Eclipse coarse model within the sections where these transition data points exist.

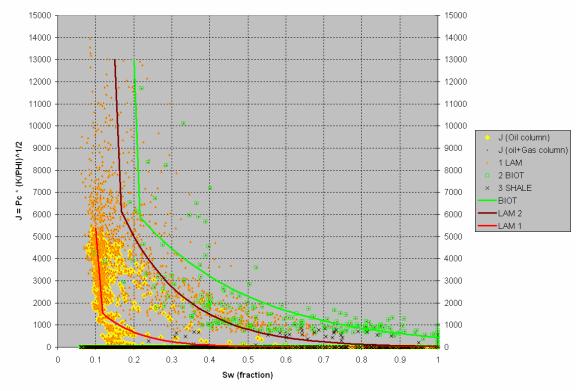


Figure 3-8 North Amethyst K-15 "J" Values vs. Sw

3.1.5 Special Core Analysis

Nine full diameter core pieces from the North Amethyst K-15 well were reserved for Special Core Analysis (SCAL). SCAL work is currently ongoing. Gas-oil and oil-water relative permeability tests are planned for core taken from within the gas and oil zones at K-15. Amott/USBM wettability tests and capillary pressure tests will also be conducted.

At the time of building the North Amethyst reservoir simulation model, SCAL data was not available for the K-15 well. Therefore, the normalized relative permeability curves for the main South Avalon Pool model were used for the North Amethyst simulation model. The K_r and S_w end points for the North Amethyst distinguished rock types were predicted using correlation plots. Correlation plots for Sor, kro, krg and krw are shown in Figures 3-9, 3-10 and 3-11. The end points that were used in the Eclipse simulation model are summarized in Table 3-13.

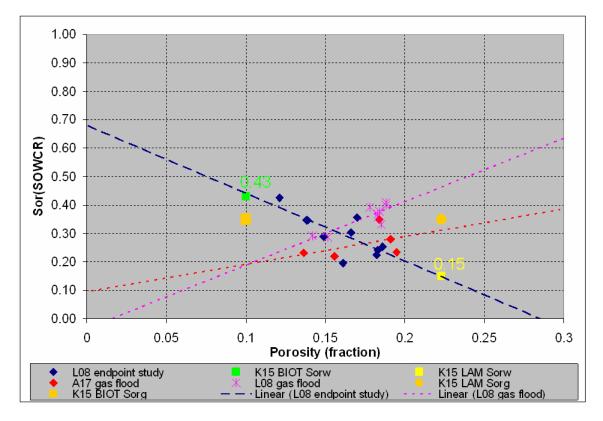


Figure 3-9 North Amethyst K-15 Sower End Points

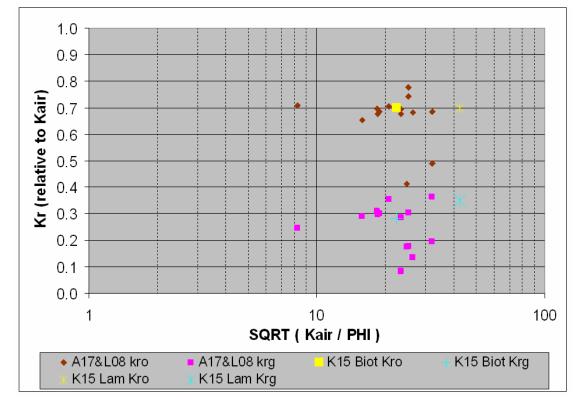


Figure 3-10 North Amethyst K-15 Kror and Krgr End Points

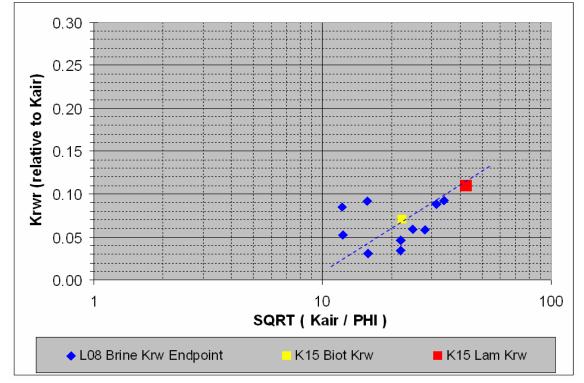


Figure 3-11 North Amethyst K-15 Krwr End Points

Table 3-13 North Amethyst Relative Permeability End Points Correlation

	Laminated	Bioturbated
Swcr	0.1	0.25
Sowcr	0.15	0.43
Sogcr	0.35	0.35
Kror	0.7	0.7
Krgr	0.35	0.28
Krwr	0.11	0.07

3.2 Development Strategy

3.2.1 Displacement Strategy

The displacement strategy for the North Amethyst field will provide water injection for pressure support, however both gas flood and water flood options were considered. In terms of ultimate oil recovery and current *SeaRose* FPSO gas handling capacity, a comparison between the gas flooding and water flooding scenarios has recommended water flooding as the preferred secondary recovery mechanism.

The depletion plan for the North Amethyst field includes secondary recovery by water flood. Seawater will be injected from the *SeaRose* FPSO and will be sourced and treated in the same manner as water that is currently being injected into the South Avalon pool.

3.2.2 Development Scenario

A prediction model was run for development of the North Amethyst field. Figure 3-12 shows a top view of the current proposed well locations for the North Amethyst field development. The northwest-southeast oil region of the North Amethyst field was found to be best drained by four horizontal oil producers and five water injectors (1 horizontal and 4 deviated).

Further optimization and well design work scope will be conducted and, as such, well counts and well plans may change. The following details are included as an overview of the current development scenario wells.

Primary Wells

The following wells are currently proposed for development of the North Amethyst field. The proposed well designs and locations are based on the current well planning scenario, however further optimization is still ongoing and these plans may be altered as a result of that optimization work.

Oil Producers:

- Horizontal producer P1 in the south region. The well is oriented northwestsoutheast parallel to the eastern boundary fault. Sensitivity of optimum TVD elevation has recommended approximately 2,355 mTVDss.
- Horizontal producer P2 in the central region. The well is oriented Northwest westsoutheast east intersecting two internal faults. Sensitivity of optimum TVD elevation has recommended approximately 2,365 mTVDss for this well.

- Horizontal producer P3 at the northern region. Sensitivity of optimum TVD elevation has recommended approximately 2,360 mTVDss.
- Horizontal producer P4 in the northern region. Sensitivity of optimum TVD elevation has recommended approximately 2,360 mTVDss.

Water Injectors:

- Southern horizontal water injector located on both sides of an internal fault.
- Four deviated water injectors located in the north and central regions.

Since the northwest-southeast elongated North Amethyst oil region is isolated from the east by a major eastern boundary fault, all Eclipse model runs discussed in this evaluation have assumed no aquifer exists.

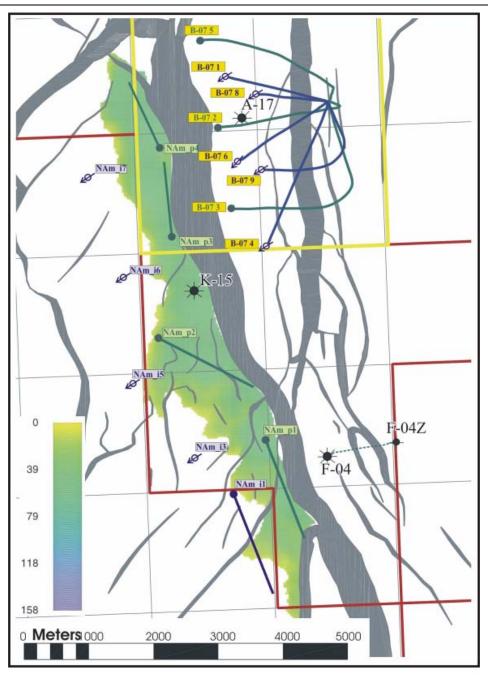


Figure 3-12 Proposed North Amethyst Well Locations

3.2.3 Reservoir Management Plan

The reservoir management plan for the North Amethyst field will be incorporated into the existing criteria currently being used to manage the White Rose South Avalon pool. Each pool in the White Rose area is at the bubble point pressure with an overlying gas cap and underlying water leg. Therefore, a voidage replacement ratio between 1.0 and

1.2 will continue to be targeted. This will provide for long term pressure support in case of any unforeseen interruptions in water injection.

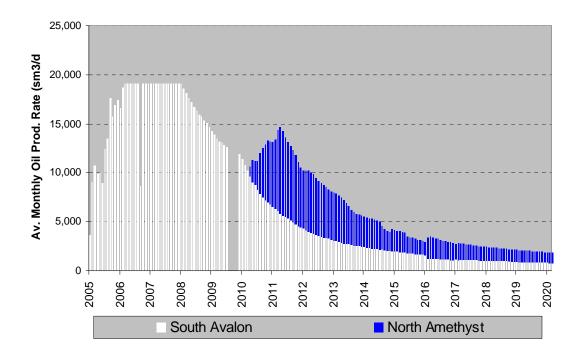
Produced gas from the North Amethyst field will be re-injected into the North Avalon pool for storage purposes in the same manner that excess produced gas from the South Avalon pool is currently being handled. The gas storage area capacity is currently under evaluation and the Northern Drill Center (NDC) has two spare drilling slots which are available for expansion.

3.3 Reservoir Simulation

3.3.1 Simulation Model

The North Amethyst Eclipse simulation model was generated from the geological model updated in January 2006 after up-scaling the cell dimensions and petrophysical characteristics. The Eclipse model was initialized having $50 \times 114 \times 326$ cells with aerial dimensions of approximately 100 m x 100 m. The vertical thickness of cells vary from 1.4 m to 2.2 m within the main hydrocarbon region. The thickness coarsens from 2.5 m to 2.0 m as the structure dips west into water. The total number of active cells in the Eclipse model was 342,415.

3.3.2 **Production / Injection Constraints**


The base case North Amethyst simulation model was run together with South Avalon production and is assuming an annualized production rate of 19,081 m^3/d (120,000 bopd). The case considered presents one potential scenario but field optimization and management will be conducted on a field by field and on an integrated basis. The following are the assumptions used in conducting the base case North Amethyst simulation model. Any change to these assumptions will impact the results presented in this section.

- North Amethyst is tied back to SeaRose FPSO directly;
- First oil from the North Amethyst Satellite Tie-back on December 1, 2010;
- North Amethyst development is based on a 9 well scenario (4 producers and 5 water injectors (1 horizontal and 4 deviated));
- Vertical flow performance (VFP) tables based on 177.8 mm tubing and current White Rose standard production well completion.
- VFP tables were generated (using Prosper software) for production wells using proposed well trajectories and predicted production and pressure performance from Eclipse. In addition, a minimum well head pressure (WHP) of 5,700 kPa and a minimum bottom hole pressure (BHP) of 20,000 kPa were applied for all four North Amethyst oil producers.

- The current SeaRose production and injection constraints were considered:
 - Gas compression capacity = $4.2 \times 10^6 \text{ m}^3/\text{d}$
 - Total water injection capacity = $44,000 \text{ m}^3/\text{d}$
 - Water injection capacity per glory hole = 30,000 m³/d
 - Produced water = $28,000 \text{ m}^3/\text{d}$
 - Total liquids = $33,000 \text{ m}^3/\text{d}$
 - Lift gas = $1.6 \times 10^6 \text{ m}^3/\text{d}$
 - Lift gas per glory hole = $1.19 \times 10^6 \text{ m3/d}$

3.3.3 Production / Injection Performance

The maximum oil production rate is expected to be between 10,000 m³/d (62,900 bopd) and 12,000 m³/d (75,500 bopd) for the North Amethyst group of wells. The maximum oil production rate will be refined based on further modeling, optimization, and actual drilling and production results. The combined North Amethyst and South Avalon base case production profile is shown in Figure 3-13.

Figure 3-13 Combined North Amethyst and South Avalon Base Case Production Profile

The producing water cut versus oil recovery for the North Amethyst field and the South Avalon pool are presented in Figure 3-14. The changes in the producing gas-oil ratio with oil recovery over the predicted life of the field are illustrated in Figure 3-15. The

North Amethyst water-cut and producing gas-oil ratio profiles are much more accelerated than in the South Avalon Pool. The North Amethyst overall performance is predicted to exceed a GOR of 600 Sm^3/d and a watercut of 50% before producing 20% of its original oil in place. The GOR is expected to increase dramatically in the North Amethyst region due to the relatively high vertical sand continuity which translates into a high kv/kh ratio. Primary recovery for the North Amethyst base case development scenario is approximately 5.04 million Sm^3 , at a recovery factor of 12.3%.

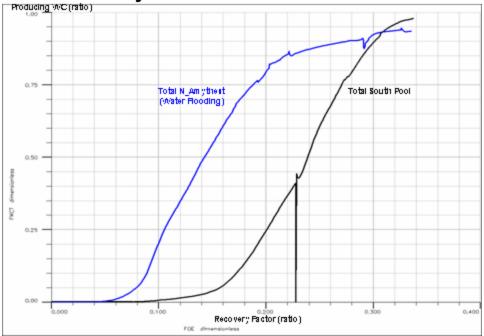


Figure 3-14 North Amethyst and South Avalon Base Case Watercut versus Recovery Factor

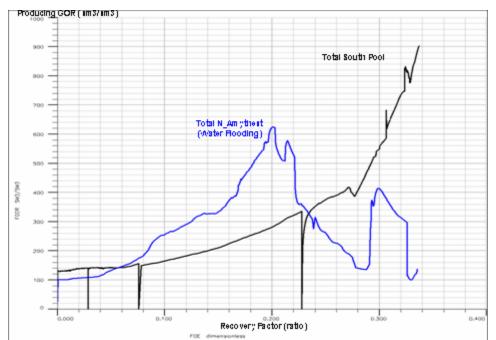


Figure 3-15 North Amethyst and South Avalon Base Case GOR versus Recovery Factor

The produced water, water injection, total liquid and gas profiles for the North Amethyst base case are shown in Figures 3-16 through 3-19. Water will be injected into the North Amethyst reservoir to maintain a voidage replacement of 1.0 to 1.2. All peak values are within the current topsides constraints of the *SeaRose* FPSO.

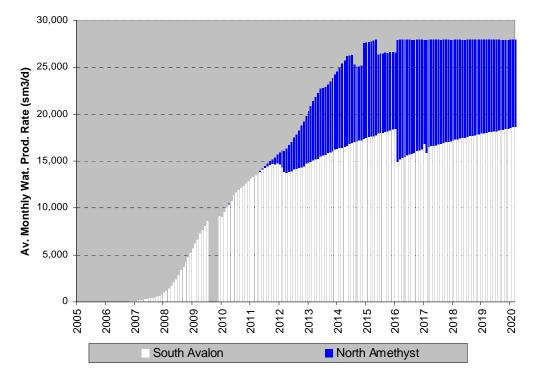


Figure 3-16 Combined North Amethyst and South Avalon Average Monthly Water Production

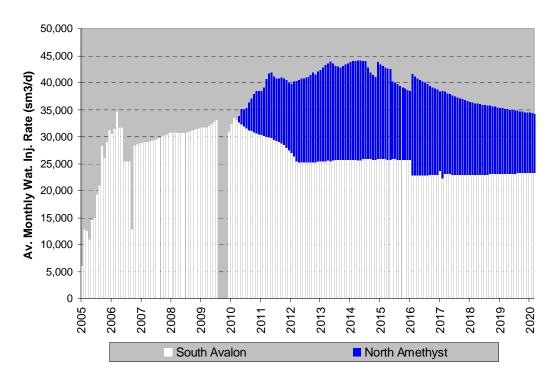


Figure 3-17 Combined North Amethyst and South Avalon Average Monthly Water Injection

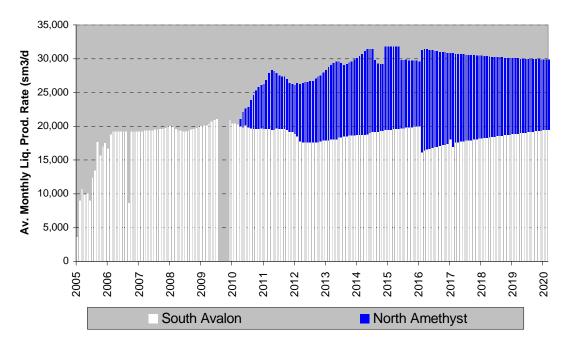


Figure 3-18 Combined North Amethyst and South Avalon Average Monthly Total Liquid Production

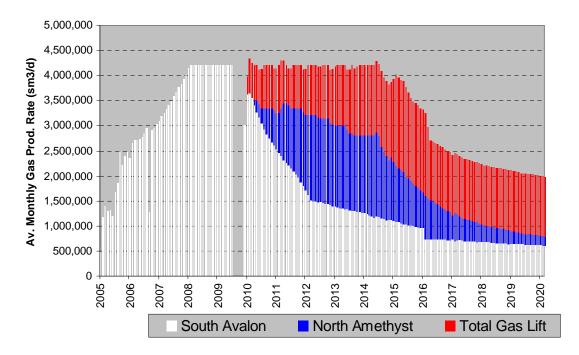


Figure 3-19 Combined North Amethyst and South Avalon Average Monthly Gas Plot

3.4 **Production Forecasts**

The base case production profile for the combined North Amethyst and South Avalon is illustrated in Figure 3-13. Table 3-14 presents the oil production forecast in tabular format. The ultimate recovery for the North Amethyst base case development by the end of 2020 is 11.25 million Sm³ (70.7 million bbls).

	Annual Oil Production				
Year	South Avalon	North Amethyst			
	Sm ³	Sm ³			
2005	390,392.6	0.0			
2006	5,142,242.1	0.0			
2007	6,639,840.0	0.0			
2008	6,969,810.4	0.0			
2009	5,810,110.8	0.0			
2010	3,017,850.4	0.0			
2011	2,885,512.8	1,530,554.0			
2012	1,842,174.7	2,694,708.5			
2013	1,256,805.4	2,001,060.7			
2014	963,144.9	1,352,688.0			
2015	771,245.9	905,849.0			
2016	622,599.5	623,872.6			
2017	417,918.2	704,404.1			
2018	379,781.3	556,442.1			
2019	345,213.1	469,202.6			
2020	317,281.8	407,439.8			
Total (Sm3):	37,771,924	11,246,221			
Total (bbl):	237,577,847	70,736,483			

Table 3-14 Combined North Amethyst and South Avalon Base Case Production Profile

3.5 Reservoir Simulation Sensitivities

Two sensitivities were also run for the North Amethyst field:

- A rate sensitivity at an average annualized oil production rate of 140,000 bbl/d from the combined North Amethyst and South Avalon.
- Gas flood of the North Amethyst field.

3.5.1 140,000 bbl/d Rate Sensitivity

A rate sensitivity was conducted based on an average annualized oil production rate of 140,000 bopd from the combined North Amethyst and South Avalon. There is very little difference between the ultimate recovery for the 19,081 m³/d (120,000 bopd) and 22,261 m³/d (140,000 bopd) simulation runs. Figures 3-20, 3-21 and 3-22 illustrate the

production profile, watercut and GOR trends for the 22,261 m^3/d (140,000 bopd) sensitivity case.

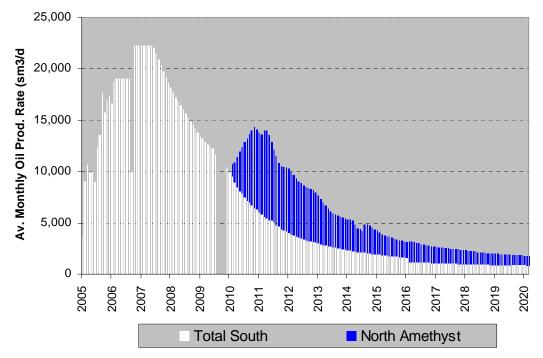
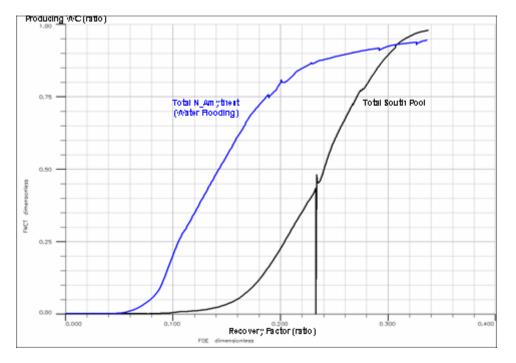
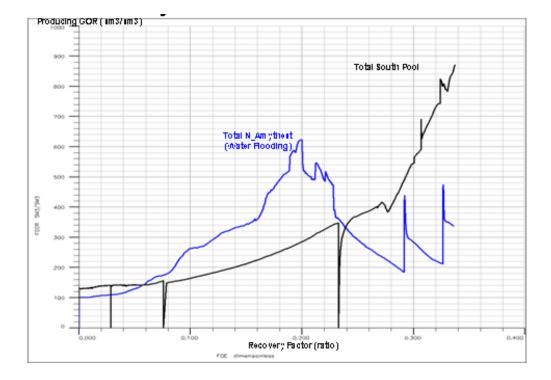




Figure 3-20 North Amethyst 140,000 bopd Sensitivity Production Profile

3.5.2 Gasflood Sensitivity

For the gasflood sensitivity, four horizontal producers and three gas injectors were used in the simulation model. Figures 3-23 and 3-24 illustrate the production profile and the GOR trends for the 19,081 m³/d (120,000 bopd) gasflood sensitivity case. A recovery factor for the gasflood scenario considered for the North Amethyst field was 9.8%.

A comparison of the ultimate recovery for the two sensitivity cases as well as the base development case is presented in Table 3-15.

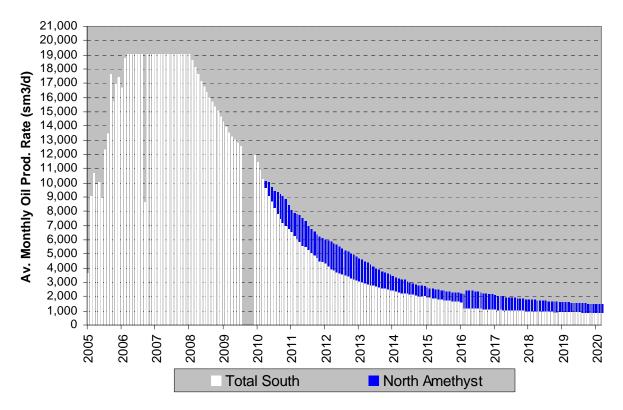


Figure 3-23 North Amethyst 120,000 bopd Gasflood Sensitivity Production Profile

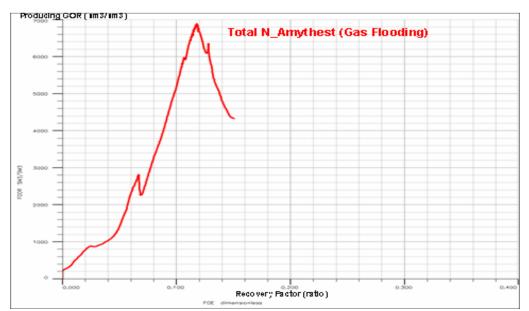


Figure 3-24 North Amethyst 120,000 bopd Gasflood Sensitivity GOR versus Recovery Factor

······································						
Case	Ultimate Recovery at 2020 (million Sm ³)	Recovery Factor				
North Amethyst Development Base Case						
Waterflood, Annualized production rate of 120,000 bbl/d	11.25	27.51%				
Waterflood, Annualized production rate of 140,000 bbl/d	11.34	27.75%				
Gasflood, Annualized production rate of 120,000 bbl/d	3.99	9.76%				
Primary Recovery, North Amethyst Development Base Case	5.04	12.33%				

 Table 3-15 Comparison of Simulation Sensitivity Results

3.6 Reserves Estimate

The anticipated recoverable oil from the North Amethyst field is $11.25 \text{ million Sm}^3$ (70.7 million bbls). This volume corresponds to a 27.5% recovery factory of the P50 original oil in place of 41 million Sm³ (256 million bbls). This reserve estimate corresponds to the production forecast provided in Figure 3-19 and Table 3-13. A summary of the probabilistic reserves assessment is provided in Section 4.0

4.0 **Resource and Reserves Estimates**

4.1 Introduction

The North Amethyst field is directly west of the White Rose South Avalon pool and is separated by one fault. Reservoir modeling of the North Amethyst field indicates that there is between 200 and 300 MMbbls (32 and 48 e^6m^3) of oil in place with a most likely estimate being 256 MMbbls (41 e^6m^3). The range in gas cap gas in place is between 100 and 200 Bcf (3 and 6 e^9m^3) with the most likely estimate being 150 Bcf. (4 e9m3) (Table 4-1). Figures 4-1 and 4-2 illustrate the hydrocarbon thickness and distribution over the structure.

	OOIP	Liquids in Gas Cap		OGIP	Gas in Oil
MMBbl	256	8	Bcf	150	150
e ⁶ m ³	41	1	e ⁹ m ³	4	4

Table 4-1 Oil and Gas in Place Estimates, North Amethyst

Currently Husky is carrying a range of recovery factors for the North Amethyst field of 18-55%. The most likely recovery factor, which is currently used, is 27% which equates to approximately 70 MMBbl (11 e^6m^3) of recoverable oil in the North Amethyst field.

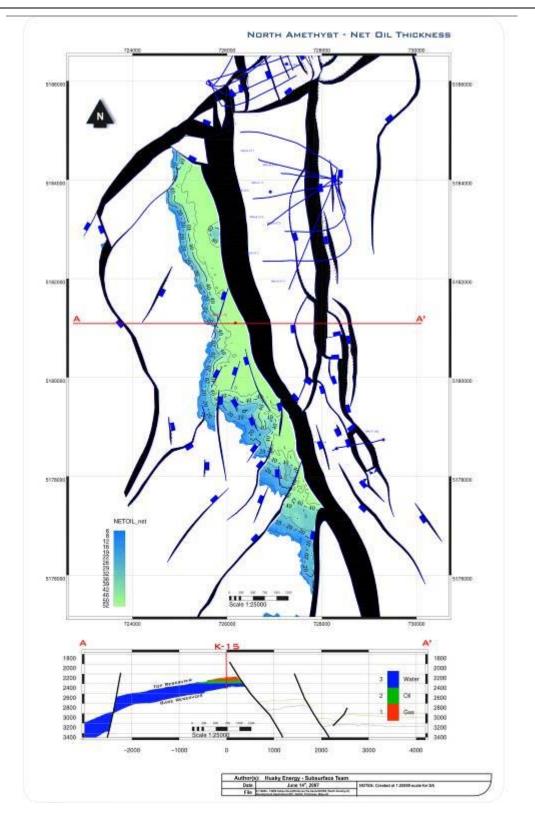
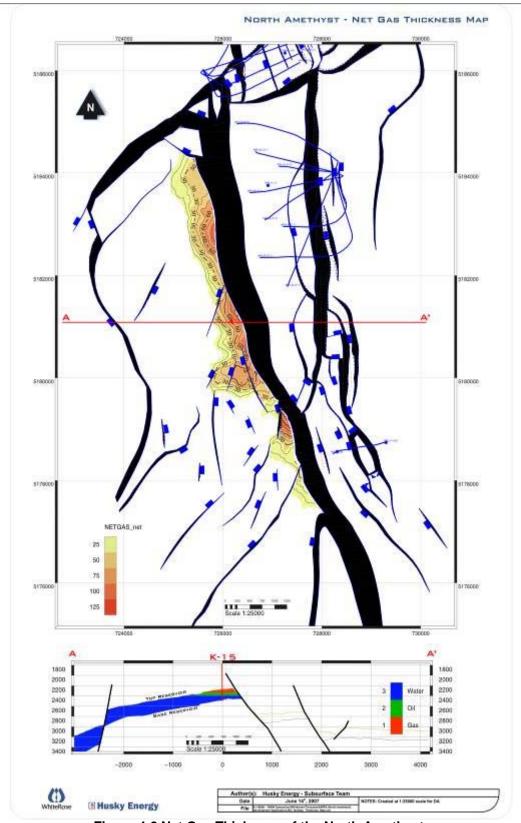
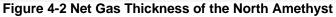
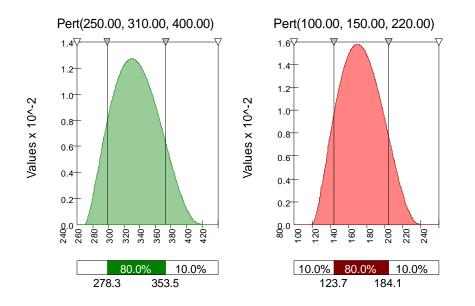




Figure 4-1 Net oil thickness map of the North Amethyst Field

4.2 Probabilistic Resource-In-Place

4.2.1 Methodology


The North Amethyst field probabilistic resource estimates were generated using @RISK's (software add-on to Microsoft's Excel) Monte Carlo/Latin Hypercube estimation method. This is the same methodology used in past estimations for the field. Oil and gas volumes were calculated on a single block basis for North Amethyst as a smaller block naming convention is not required for this region. This section will report the North Amethyst field as a single block, which is consistent with past assessments. More defined and smaller areal extent reporting can be conducted on a one-off basis.

In order to generate a probabilistic distribution for the North Amethyst field, ranges of bulk rock volume (BRV), porosity (Phi), net-to-gross (N:G), Formation Volume Factor (FVF), and water saturation (Sw) had to be determined on consistent intervals within the formation. For the purpose of this evaluation, the main intervals of analysis where defined by the fluid contacts such that the gas and oil legs have their own data inputs.

In general, each parameter was assigned a distribution based on a most-likely value, an assigned maximum and minimum, and skew. As in past reviews, BRV was addressed first followed by N:G, Phi, Sw and FVF.

4.2.2 Rock Volume Distribution

The bulk rock volume distribution for North Amethyst was generated in much the same way as for the South White Rose pool. In this case, a first pass unstructured grid was built and the surfaces adjusted to produce a low-, high-, and most-likely case. Figure 4-3 illustrates the BRV distribution used in the @RISK simulation

Figure 4-3 North Amethyst BRV Distributions for Oil (Left) and Gas (right) legs

Upon penetrating the reservoir with the K-15 well it was found that the top Ben Nevis came in 15 m higher than prognosed in the well basis of design. The base was out by nearly the same amount. The bulk of the difference can be attributed to the well being spudded approximately 20 m south of the original location, and no re-prognosis for the different location was included in the reservoir model. This raises the question of whether the entire surface require a bulk shift of 15 m or is the correction only at the well. Given that there is only a single well in the structure, and that the difference is within the accuracy of the seismic (+/- 30 m) only a local correction is applied to the base case, with the upside case capturing a bulk shift value. Table 4-2 outlines the methodology used to define the high and low cases used in the probabilistic distribution.

Bulk Rock Volume (BRV) Sensitivity (e ⁶ m ³)								
	Oil Gas NAm Block 33 NAm Block 32 NAm Block 33 NAm Block 32		as	Comments		Actual Inputs to @RISK		
			NAm Block 33 NAm Block 32			Oil BRV	Gas BRV	
Base Case	311	50	153	3	Local correction to K15block 32 oil leg BRV not used in P50 case as spill point came in 25m deeper than expected suggesting a downward correction may be required in this region	310	150	
High Side Max*	363	87	204	7	+15 m shift applied to top horizon and tied to wellbase case BRV for block 32 used in upside as the +15m shift fully violates the closure and known OWC encountered in K15also adds uncertainty to the seal separating North Amethyst from the Archer/Amethyst regiongas buffered to account for erosional effects at north end of structure	400	220	
Low Side Min	261	30	113	1	-15m off the top horizon and tied to wellblock 32 was omitted from the BRV input under the assumption that in a true lowside minimum scenario the faults to the north are the seal and this block is wet (i.e. part of the Archer/Amethyst trendgas buffered as mentioned above	250	100	

Table 4-2 Bulk Rock Volume (BRV) ranges for North Amethyst

4.2.3 Net to Gross Distribution

The N:G distribution for use in @RISK was generated from the K-15 well. Reservoir quality in this well may not be fully representative of this region and, as a result, N:G is one of the main sensitivities to resource-in-place numbers. In the case of the North Amethyst region, an adjustment was made to account for some poorer quality reservoir encountered in the gas leg of the well entering the oil window down dip of the structure. As a result, the N:G in the well is not used as the most likely outcome. Lateral trends are also considered such that poorer reservoir quality is expected to the west due to the slight movement in the depositional dip direction. Figure 4-4 illustrates both the oil- and gas-leg N:G distributions.

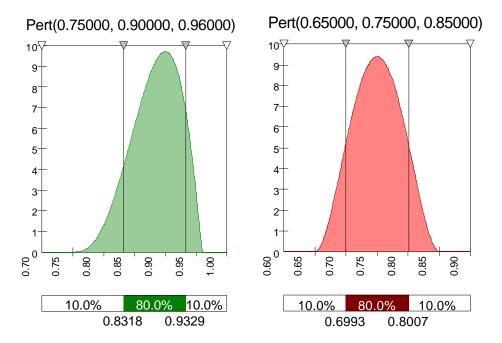


Figure 4-4 North Amethyst N:G Distributions for Oil (Left) and Gas (Right) Legs

4.2.4 Porosity Distribution

As note previously, porosity ranges are minor due primarily to the homogenous nature of this lower shoreface reservoir. The limited porosity range in the North Amethyst region assumes that where reservoir quality sands are present they exhibit the same characteristics as K-15 proper. Figure 4-5 illustrates the porosity distributions for North Amethyst.

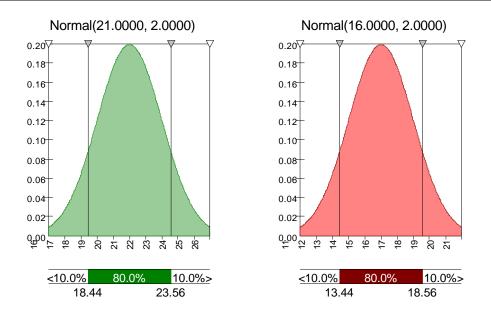


Figure 4-5 North Amethyst Porosity Distributions for Oil (Left) and Gas (Right) Legs.

4.2.5 Water Saturation Distribution

The water saturation data used to define the distribution was derived from the recently obtained K-15 core plug data. Every fifth core plug sample underwent 'Dean-Stark' analysis for accurate water saturations that were then tied to the petrophysical analysis. Figure 4-6 illustrates the distribution inputs used in the @RISK simulation.

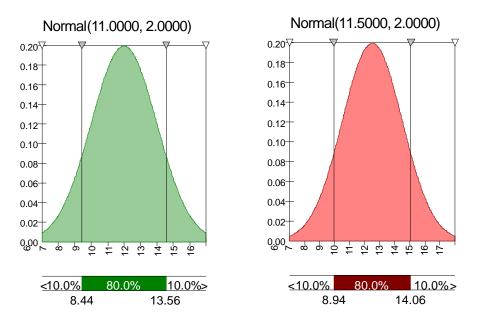


Figure 4-6 North Amethyst Sw Distributions for Oil (Left) and Gas (Right) Legs

4.2.6 Formation Volume Factor

The FVF distribution used in the North Amethyst @RISK simulation was derived from sample and analyses from K-15 (Figure 4-7). The resultant (final documentation pending) FVF is 1.27.

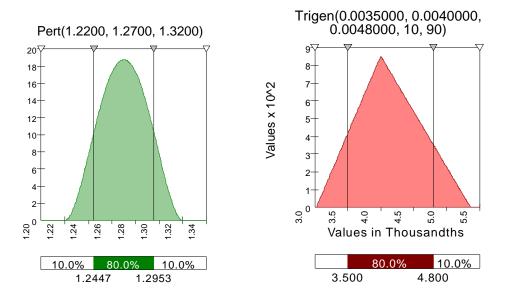


Figure 4-7 North Amethyst FVF Distributions for Oil (Left) and Gas (Right) legs

4.2.7 Correlations in @RISK Simulation

A negative correlation (-0.55) was applied to porosity and Sw. Since a single fault block was used no correlation was required between different volumetric regions. No other correlations were applied in this assessment.

4.3 Oil Resource Estimates

4.3.1 Calculated Oil Resources

Using the distributions defined in the previous section, a @RISK simulation was run with 7,000 iterations of the oil-in-place calculation. Figure 4-8 is a cumulative ascending plot illustrating the distribution of North Amethyst oil-in-place.

The probabilistic resource estimate for the main North Amethyst field has a P50 resource number of 40.8 e^6m^3 (256.75 MMbbls) of oil-in-place. The base case deterministic oil-in-place (OOIP) is 40.8 e^6m^3 (256.8 MMbbls; P50) for the full North Amethyst assessment.

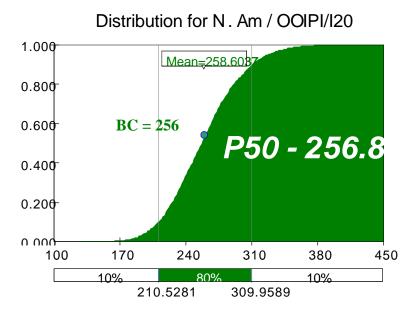


Figure 4-8 North Amethyst Oil in Place Distribution

4.3.2 Sensitivity Analysis

Given the expected range of rock volume (based on lateral depth changes and no well control) the North Amethyst oil in-place analysis is highly sensitive to this parameter (Figure 4-9). Net-to-gross and porosity are also key sensitivities to the OOIP as the uncertainty ranges for these inputs are variable. Final core plug analyses and further drilling in the region will assist in defining and tightening the ranges for the input data. There is virtually no impact from changes in adjacent blocks in this study, due primarily to a consistent depositional environment for all blocks.

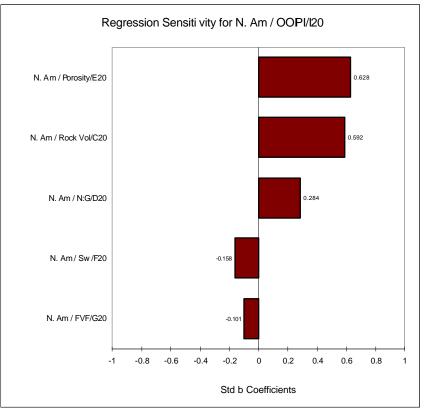


Figure 4-9 North Amethyst OOIP sensitivity analysis (from @RISK).

4.3.3 Solution Gas

The solution gas-oil ratio (Rs) has been updated for the K-15 results and used to calculate the solution gas resources expected over the North Amethyst field. The Rs ranges from 97 to 111 with a most likely of 104 m³ per standard m³. As with the oil-in-place, the solution gas was probabilistically modeled in @RISK. Figure 4-10 illustrates the solution gas distribution (in bcf).

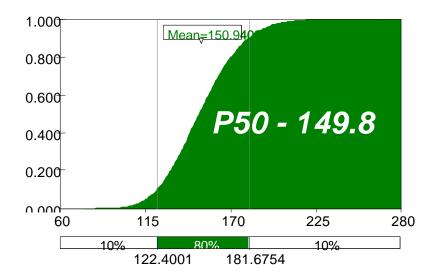


Figure 4-10 North Amethyst Solution Gas Distribution (bcf)

4.4 Gas Resource Estimates

4.4.1 Calculated Gas Resources

The in-place gas (not including solution gas) for the North Amethyst field was simulated in @RISK, with the results illustrated in Figure 4-11. The probabilistic resource estimate for the main North Amethyst field has a P50 resource number of 4.4 e^9m^3 (155.0 bcf) of gas-in-place. The base case deterministic gas-in-place (OGIP) is 4.2 e^9m^3 (149 bcf -P43) for the full North Amethyst assessment.

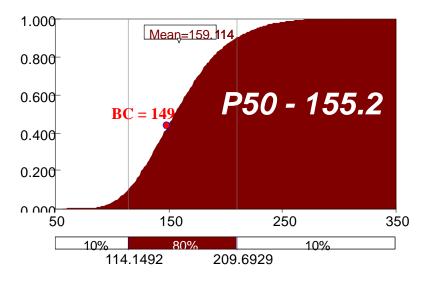


Figure 4-11 North Amethyst Gas in Place Distribution (bcf)

4.4.2 Sensitivity Analysis

Given the expected range of rock volume (based on lateral depth changes and no well control) the North Amethyst gas in-place analysis is highly sensitive to this parameter (Figure 4-12). Net-to-gross and porosity are also key sensitivities to the OGIP as the uncertainty ranges for these inputs are variable. Final core plug analyses and further drilling in the region will assist in defining and tightening the ranges for the input data. There is virtually no impact from adjacent blocks in this study, due primarily to a consistent depositional environment for all blocks.

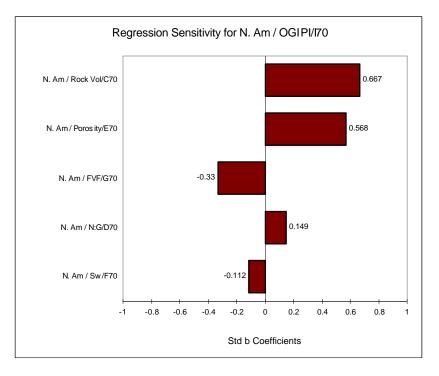


Figure 4-12 North Amethyst OGIP Sensitivity Analysis

4.4.3 Associated Liquids

The associated liquids for the North Amethyst field are based on the main White Rose development liquids ratio. The probabilistic distribution for the in-place associated liquids in the gas cap is illustrated in Figure 4-13.

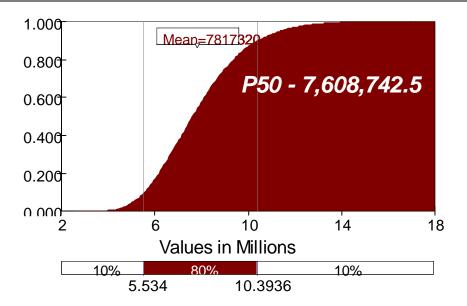


Figure 4-13 North Amethyst Associated Liquids in the Gas Leg (bbls).

4.5 Probabilistic Reserves, North Amethyst Field

4.5.1 Base Recovery Factor

Base recovery factors have been derived from simulation results. In past studies, recovery factors were assigned, in some cases, on a block-by-block basis. Current understanding of the reservoir supports a single distribution to represent the entire North Amethyst recovery factor range.

4.6 Reserve Estimates

4.6.1 Reserve Calculations

Using the updated recovery factors for oil and gas for the North Amethyst region, the recoverable portion of the in-place volumes was defined as a distribution. Given the delineation nature of the North Amethyst field, it was treated as one large macro-block, with no meso-scale fault blocks defined. The P50 recoverable oil is 70 MMbbls.

4.6.2 Sensitivity Analysis

As indicated in Figure 4-14, the key parameters affecting the recoverable oil recovery for North Amethyst are recovery factor (RF), porosity, BRV, and net-to-gross in decreasing order of impact. Given that the well control over this region is sparse and there are no dynamic data, the wide ranges on RF have a strong effect on recoverable volumes.

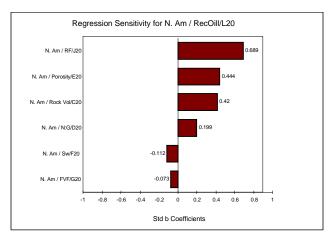


Figure 4-14 Sensitivity Analysis for North Amethyst Recoverable Oil

5.0 Facilities Design Criteria

5.1 Regulations, Codes and Standards

The facilities will be designed such that they comply with codes and standards, and regulatory requirements outlined in the following sub-sections.

5.1.1 Codes and Standards

Engineering and design practices will be common across the existing White Rose Development and all designs will conform to the codes and standards referenced in the legislation and/or appropriate Canadian standards. Generally accepted international standards, such as ANSI / ASME specifications, International Standards Organization (ISO) standards and American Petroleum Institute (API) recommended practices, will be applied as appropriate and in cases where they are considered equal to or exceed the requirements of the Canadian equivalent.

5.1.2 Regulatory Requirements

The installations will conform to the requirements of the following Canadian Federal and Provincial regulations that include, but are not limited to:

- Canada-Newfoundland Atlantic Accord Implementation Act (S.C. 1987, c.3);
- Canada-Newfoundland and Labrador Accord Implementation Newfoundland and Labrador Act (R.S.N.L. 1990, c. C-2).
- Newfoundland Offshore Certificate of Fitness Regulations 1995 (SOR/95-100);

- Newfoundland Offshore Area Petroleum Production and Conservation Regulations 1995 (SOR/95-103);
- Newfoundland Offshore Petroleum Installations Regulations 1995 (SOR/95-104);
- Draft Newfoundland Petroleum Occupational Safety and Health Regulations (posted on CNLOPB website on May 3, 2004);
- Newfoundland Offshore Petroleum Drilling Regulations 1993 (SOR/93-23);
- Canada Shipping Act (R.S., 1985, c. S-9);
- Offshore Waste Treatment Guidelines (August 2002); and
- Newfoundland Offshore Area Guidelines for Drilling Equipment (March 1993).

5.2 **Overall Design Requirements**

The facilities design will meet the following additional requirements:

5.2.1 Fatigue

Target fatigue life for subsea equipment will be in accordance with the regulations listed in Section 5.1.2 and the requirements of the American Society of Mechanical Engineers (ASME), API, Det Norkse Veritas (DNV) and Canadian Standards Association (CSA) guidelines and practices.

5.2.2 Design Life Requirements

The subsea installations will be designed for a 20-year minimum service life.

5.2.3 Cathodic Protection

Cathodic protection systems will be sourced and used for protection of subsea equipment.

5.2.4 Production Testing

Husky intends to conduct a design review of the use of subsea multi-phase flow meters in the design of the NADC. This technology will be considered for use in conjunction with the existing test separation facilities as a means of conducting well testing and allocation on a well/ drill centre basis. Whenever well testing is not ongoing, it is anticipated that the second line will continue to be used for production to optimize production flow and mitigate wax formation in the line.

5.2.5 Hydrogen Sulfide Potential

The subsea system surfaces exposed to produced fluids will be designed for sour service according to NACE, MR-01-75, consistent with the present White Rose design and operating philosophies.

5.3 Environmental Criteria

The facilities design will utilize the same environmental criteria developed during the initial White Rose Development including data on wind, waves, currents, ice, seismic, and seawater properties and ambient temperatures.

As part of the current environmental effects monitoring (EEM) program, baseline environmental data for the North Amethyst area will be collected prior to drilling activities in 2008. The EEM program will be reviewed to determine required changes to design as a result of development of an additional drill centre.

Development of the North Amethyst Satellite Tie-back will comply with all applicable government legislation, corporate policy, industry standards, existing Husky procedures, and best practices. Appropriate plans/work will be completed to address any specific environmental concerns. The environmental effects of developing the North Amethyst Satellite Tie-back were assessed in the *Husky White Rose Development Project: New Drill Centre Construction and Operations Program Environmental Assessment* (Husky Document No. WR-HSE-RP-4003) and the *Husky White Rose Development Project: New Drill Centre Construction and Operations Program Environmental Assessment Addendum* (Husky Document No. WR-HSE-RP-0167), approved April 19, 2007.

5.4 Quality Assurance and Quality Control

Quality assurance and quality control will be achieved utilizing existing processes for similar White Rose activities.

5.5 Certification

Certifying Authority (CA) services will include activities during design, fabrication, installation, and commissioning as required for activities related to the North Amethyst Satellite Tie-back.

5.6 Decommissioning and Abandonment

The decommissioning and abandonment of the North Amethyst facilities will be in accordance with the established White Rose Decommissioning and Abandonment Plan.

6.0 Alternative Modes of Development

The following sections outline Husky's examination of the feasibility of alternative production and export systems for the North Amethyst field.

6.1 Concept Selection

An investigation was carried out by Husky to identify the alternatives and preferred options for development of the North Amethyst field. The first stage of the alternatives investigation reviewed previous work related to selection of the *SeaRose FPSO* for the White Rose Development.

For the initial White Rose Development concept selection, eight production concepts were evaluated based on economics, flexibility, feasibility, deliverability and Canada-Newfoundland and Labrador Benefits:

- steel FPSO facility;
- concrete FPSO facility;
- steel floating, production, drilling, storage, offloading (FPDSO) facility;
- concrete gravity-base structure (GBS);
- steel semi-submersible facility with and without integral storage;
- concrete semi-submersible facility;
- disconnectable concrete tension leg platform (TLP); and
- concrete barrier wall with floating production unit (FPU).

This process eliminated options that were not technically or economically feasible. Although the work was completed five years ago, the fundamental drivers for the decisions have not changed. These drivers relate to relative levels of cost and effort, and although absolute values have altered, the relative rankings remain the same.

Taking into account this previous work, Husky examined two alternative concepts for development of the North Amethyst field:

- A subsea tie-back system to the existing SeaRose FPSO facility
- A subsea system to a greenfield steel ship-shaped FPSO facility.

6.2 **Production System Alternatives Considered**

6.2.1 Subsea Tie-Back to SeaRose FPSO

The subsea tie-back to the *SeaRose* will consist of templates, manifolds, flowlines, umbilicals and risers tied directly back to the facility or back to the facility via existing infrastructure (i.e., existing White Rose drill centres). The main method of iceberg scour protection for wellhead equipment, trees and manifolds will be a dredged glory hole at a strategic location to optimize well placement for production.

6.2.2 Subsea System to Greenfield FPSO Facility

The alternative method of developing North Amethyst that was considered comprised a tie-back to a standalone greenfield FPSO facility. This alternative would be very similar to the existing White Rose Development although the vessel would likely be smaller than the *SeaRose* with one drill centre for production and tied into the existing Northern Drill Centre (NDC) for gas injection.

Similar to the *SeaRose*, the new FPSO would be moored using a geo-stationary turret, which is anchored to the seabed. The turret mooring would be disconnectable so that the FPSO could move from station to avoid icebergs. The functional characteristics of the turret would be similar to the *SeaRose* vessel.

The subsea solution for the floating production facility would be the same as for the existing White Rose Development, consisting of templates, manifolds, flowlines, umbilicals and risers. A glory hole would protect the subsea wellhead components.

Also similar to the *SeaRose*, production facilities would be mounted on raised supports above the vessel deck. Reservoir fluids pass from subsea production wells, via flowlines and risers up into the turret and then to the production facilities. Produced oil would be stored in the vessel cargo tanks and periodically offloaded on to a shuttle tanker via an offloading hose.

The processing requirements would likely be based upon a single train and not require any unconventional facilities. The oil would be stabilized in a conventional separation train and de-watered prior to rundown. Produced gas would be compressed for reinjection using a multi-stage compression train.

If the NDC was used for gas injection, a subsea structure would be installed to accommodate tie in of a new flowline and umbilical to the existing NDC flowline and control systems, currently controlled from the *SeaRose*.

6.3 Investigations into the Greenfield FPSO Alternative

To better understand the feasibility of the new FPSO alternative, an investigation was conducted to review procurement options. Consideration was given to current market conditions for shipyard construction, and for the design, construction and installation of topsides and turret mooring systems. The following sections outline the results of that investigation.

6.3.1 FPSO Options

Two potential FPSO facility options exist:

- a) Near sister ship to *SeaRos*e, using similar production throughputs, and with enhancements based on lessons learned from *SeaRose* operation.
- b) Smaller facility to address lower production scenarios i.e., 60,000 to 80,000 bbl/day production and possibly a reduced storage capacity (circa 600,000 bbls).

Both options could utilize either a new build or a converted tanker for the hull. The most likely scenario is that the larger facility would utilize a new build hull, as it would prove difficult to find an existing hull of sufficient size, quality, strength and design life to meet project needs. For the smaller facility, conversion candidates that meet the required specifications are more readily available. Table 6-1 outlines the relative positive and negative aspects of a new build FPSO versus a tanker conversion.

New E	Build	Tanker Conversion				
Positive Aspects	Negative Aspects	Positive Aspects	Negative Aspects			
Design flexibility	Longer procurement (design/build cycle)	Shorter procurement cycle	Fixed hull configuration			
Wider range of configuration options	Relatively high cost	Lower cost	Unknowns with respect to start point/condition			
Material selection options			Challenging upgrade requirements (structure and systems)			
Clear compliance requirements			Challenging compliance requirements			
Incorporate structural enhancements			Scope definition will be			

Table 6-1 New Build vs. Tanker Conversion

/integration	high risk
Optimisation of marine systems	Steel quality/grade issues
Pre-planned interface systems	
Enhancements for access, inspection & maintenance	

Another option for the smaller unit would be to consider redeployment of an existing unit on either a lease or a purchase basis. There were a small number of existing units identified which could be available for redeployment from areas such as the North Sea (UK and Norway). These units would require varying levels of upgrade and refurbishment. The availability and suitability of such units would depend on:

- near proximity of the vessel's specification with required functional requirements;
- suitability of the vessel hull to meet the low design temperature requirements for Atlantic Canada which demands a very high grade of steel construction;
- suitability of the vessel to meet requirements related to green water protection and survival conditions under the 100 year storm criteria on the Grand Banks;
- suitability of the vessel to meet disconnection for ice avoidance requirements;
- suitability of the vessel to meet Canadian legislative regulations (i.e., double hull, etc);
- extent of modifications required to topsides processing and utilities equipment;
- availability of deck space and load capacity for additional equipment;
- degree to which the CoP (Cessation of Production) dates can be accurately forecast by the owners and existing charter holders; and
- current level of extension options available to existing charter holders.

6.3.2 Current FPSO Market Conditions

The offshore engineering and construction market has experienced a significant up-turn in activity over the last few years, driven by a combination of sustained high oil prices and resulting increased investor confidence. Within the overall engineering and construction market, floating production systems have also seen an up-turn in activity, which has generated an all time record high level of activity and order backlogs.

The current order book for production and storage systems as of November 2006, based on data from International Maritime Associates Inc. (IMA) in Washington, DC, has the following floating production systems registered for order:

- two Tension Leg Platforms (new build);
- forty-three Floating Production Storage Offloading (FPSO) (14 new, 27 conversions, two redeployments);
- eight production semi-submersibles (new build);
- four production spars (new build);
- one production barge (new build);
- one floating production unit (conversion);
- one Mobile Offshore Production Unit (conversion); and
- five Floating Storage Offloading (FSO) vessels (one new build, four conversions).

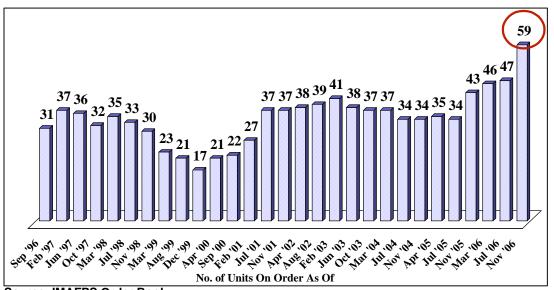


Figure 6-1 shows the current and historical Floating, Production, Storage (FPS) Order Book.

Source: IMAFPS Order Book

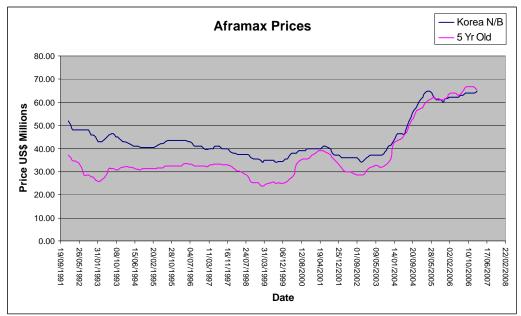
Figure 6-1 Current and Historical FPS Orders

The consequences of these general market conditions include:

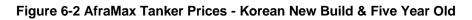
- the FPSO order backlog is at an all time high at 70% above the 10 year average (1996-2006);
- the supply side for equipment and services is currently operating at overcapacity with lead times in many cases doubling or tripling so that even stock items are now wait listed
- long lead times for new hull construction slots (currently circa three to four years from the time of order, depending on hull type and specification);
- longer lead times for key equipment items (e.g. valves, high specification materials, power generators, pumps);
- an industry-wide shortage of experienced people in engineering, project management and construction;
- competition with other industries and infrastructure projects for resources (e.g. onshore petrochemicals, oil sands projects); and
- contractor focus on lowering their commercial project execution risk.

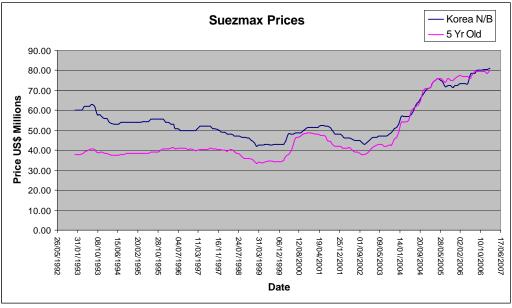
The impact of these conditions on the specific FPSO market includes:

- Established FPSO contractors have solid order backlogs and can afford to be selective about the contracts they pursue to ensure best risk/return opportunities.
- If a new hull is required then early commitment to a hull construction slot is required to meet hull delivery within a three to four year window.
- There are many new market entrants into the sector (particularly for contractor owned units) and many units are being built speculatively. The specifications of these units are not generally suited to Atlantic Canada and ice presence.
- Topsides Engineering, Procurement and Construction (EPC) contractors have high workloads in most areas and are looking for contracts with no risk (i.e. most will only take on reimbursable or target price contracts rather than lump sum risk for EPC contracts).
- Most Korean shipyards are willing to take on full EPC responsibility using traditional Engineering and Construction contractors as sub-contractors.


Currently shipyards are also enjoying a market which is at or near all time record levels of activity. This is being driven mainly by a dramatic upturn in demand in LNG vessels, oil tankers and bulk carriers. This, in turn, has lead to a dramatic increase in shipyard prices and a shortage of hull slots leading to long lead times for construction.

The reasons for these high prices include:


- increase in the cost of Asian steel to that of European levels;
- increase in the cost of main vessel equipment such as pumps and generators;
- changes in currency exchange rates (Won to Euro and \$US); and
- increases in shipyard margins as the owners are able to increase their profit margins in line with the high market activity.


Price comparisons for Aframax and SuezMax tankers over time are shown in Figures 6-2 and 6-3, respectively.

The increase in demand since early 2005 has driven the price of the new build hulls up by 100% and reduced the margin between a new build and a five year old unit to close to nothing. This demonstrates that demand has far outstripped supply capacity and that factors such as condition or specification have very little influence in the out turn cost.

Source SSY London

Figure 6-3 SuezMax Prices - Korean New Build & Five Year Old

6.3.3 Base Case FPSO Alternative

Taking into account current market conditions and expected functional requirements, the FPSO alternative investigated for the North Amethyst field was redeployment of an existing unit with circa 600,000 bbls storage capacity as described below. These

specifications represent generic facilities expected to match development requirements. However, it should be noted that any vessel redeployed to Newfoundland and Labrador would require re-fitting to meet all regulatory and Husky standards.

<u>Hull</u>

- Aframax sized Double hull fully segregated cargo and ballast
- Ice strengthened (structure to Ice Class)
- Accommodation for 100 persons (maximum)
- 300,000 600,000 bbls storage
- Self propelled with heading control facility possibly multiple azimuth thrusters

Turret/Mooring System

- Moored by internal disconnectable turret mooring system
- 8 to10 risers

<u>Topsides</u>

- Oil production capacity of 60,000 to 80,000 bbl/day
- Liquids handling capacity of 125,000 to 165,000 bbl/day
- Water injection capacity of 165,000 to 220,000 bbl/day
- Gas compression capacity of 80 to 105 mmscf/day
- Tanker export @ <0.5%BS&W <12RVP

This alternative was further investigated as the option would be less capital intensive and therefore more acceptable to potential contractors.

Based on the foregoing analysis, the alternative that was considered for development of North Amethyst was a converted tanker with new turret and topsides or a modified/upgraded existing unit. For the above alternative, it would be likely that the vessel would be procured on a lease (bare boat charter) basis.

6.3.4 Key Risks Identified

The following were identified as key issues in today's FPSO contractor market:

- Market activity in the FPSO sector is at an all time high with a record number of new units on order (i.e., Lloyds List 28-03-07 states "More than 60 floating production systems are currently on order and over 100 could be booked over the next five years").
- Long lead times for new hull construction exist because of high levels of activity within the shipbuilding market sector.
- Long lead times exist for many items of oilfield equipment because of high levels of development activity.
- There is a general shortage of suitably qualified and experienced project, engineering and construction resources throughout the oil and gas industry.
- Only a limited number of suitably experienced full service engineering and construction contractors are able to deliver a complete FPSO which significantly reduces the competition.
- There is a general shift away from lump sum EPC work (particularly in the area of topsides design and fabrication) and a move towards project execution based on a more segmented contracting strategy which reflects a fundamental shift of risk away from contractors to Operators/Owners.
- Competition between suitably qualified turret/mooring system vendors exists, although the number of independent turret vendors is declining due to mergers and acquisitions.

6.4 Development Alternatives Costs

Incremental capital and operating cost estimates on an annual basis for the two alternatives are presented in Table 6-2. Operating costs do not include crude transportation or decommissioning and abandonment.

	Table 0-2 inclemental Capital and Operating Cost								
	Subse	a Tie-Ba (CAD	ck to SeaR \$MM)	Rose	Subsea System to Greenfield FPSO (CAD \$MM)				
Year	DRILLEX	CAPEX	OPEX	Total	DRILLEX	CAPEX	OPEX	Lease Payment	Total
Tear	•	00				00		Fayment	
1	2	60		62	2	26			29
2	245	115		360	245	149			394
3	238	166		404	238	176			414
4	259	201		460	259	138			396
5		1	10	11		1	120	142	263
6			10	10			120	142	262
7			10	10			120	142	262
8			10	10			120	142	262
9			10	10			120	142	262
10			10	10			120	142	262
Total	744	544	60	1,347	744	491	720	852	2,806

Table 6-2 Incremental Capital and Operating Cost

Assumptions:

- 1. All CAPEX for the greenfield FPSO is absorbed in lease payment
- 2. Excludes transportation, decommissioning and abandonment costs, includes Insurance.
- 3. Tie-back to SeaRose costs include estimate for modifications to the FPSO.
- 4. OPEX related to subsea infrastructure remains constant as new equipment replaces abandoned items.
- 5. All costs in 2007 dollars
- 6. Assumes first five years of production only. Relative differences in cost would be maintained throughout the life of project.

The alternative of development of North Amethyst to a greenfield FPSO increases overall capital cost exposure due to the cost of building or acquiring an FPSO. If an FPSO is leased rather than owned than this financial arrangement would reduce CAPEX (any costs associated with the FPSO being absorbed in the lease payments). However, it would add OPEX due to the significant lease payments. The greenfield FPSO alternative does not increase recoverable reserves and therefore the additional cost must be justified on the time value of accelerated production. The greenfield FPSO alternative is not economic as it erodes Net Present Value (NPV) of the project.

6.5 Schedule for Development of Alternatives

The delivery times for the development alternatives considered are shown in Figures 6-4 and 6-5. Although the approval timeline shown is common for all alternatives under consideration, it is anticipated that a Greenfield FPSO would require substantial regulatory review which may add as much as another year to the schedule.

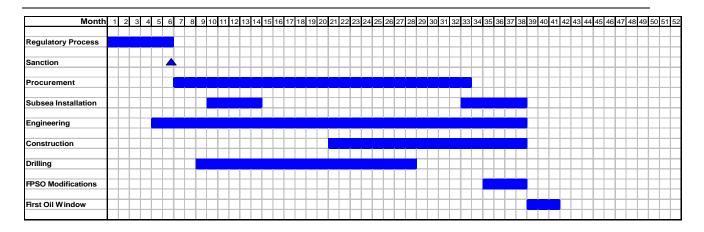


Figure 6-4 Subsea Tie-Back to SeaRose FPSO Notional Timeline

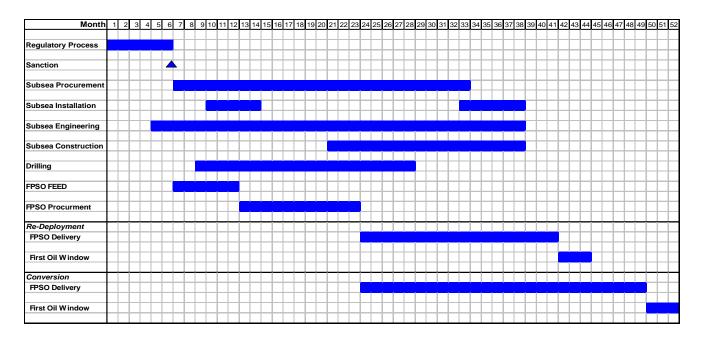


Figure 6-5 Subsea System to Greenfield FPSO Notional Timeline

Since much of the infrastructure is already in place, the subsea tie-back to the *SeaRose* can be brought into production more quickly.

6.6 Preferred Development Option

The investigation of the various production systems concluded that the preferred option for the North Amethyst field development should be based on a subsea tie-back system to the existing *SeaRose FPSO*. A greenfield FPSO for the North Amethyst field is not economically attractive, as all economic reserves can be developed through *SeaRose* with lower cost.

As is the practice in areas such as the North Sea and Gulf of Mexico (also West Africa, Brazil, Australia, and Indonesia), the use of a subsea tie-back system to an existing facility for processing capability is a cost effective way to develop small offshore oil and gas fields and it can extend the field life of existing production infrastructure. Historically, the largest fields have been developed first, mostly using steel and concrete platforms (mobile or fixed). However, to profitably exploit smaller fields, the trend is now towards subsea tie-back systems to the existing infrastructure of these larger fields. This is even more apparent in today's market conditions for new production facilities.

With the current base production profile for the White Rose Development, production on the *SeaRose* is expected to reach the end of plateau in 2008. As spare production capacity becomes available in *SeaRose*, a subsea tie-back will make use of this future capacity, thereby maximizing utilization of the existing infrastructure and lowering the threshold for small field developments. This development option is the more feasible alternative for North Amethyst.

7.0 Production and Export Systems

The production and transportation system that will be used for the North Amethyst Satellite Tie-back project will be the same as that employed for the existing White Rose Development. Specifically, oil produced from the new North Amethyst wells will be transferred through flowlines back to the *SeaRose* for processing and storage. The oil will be offloaded from the *SeaRose* to tankers for transport to market as is currently done with White Rose oil.

8.0 Construction and Installation

The North Amethyst Satellite Tie-back will be developed by excavating a new glory hole. Within the glory hole, one new drill centre, the NADC, is being considered with wells either tied back from the glory hole directly via new flow lines and new dedicated riser systems (Option A) (Figure 8-1) or via new flow lines to the existing subsea infrastructure (Option B) (Figures 8-2 and 8-3).

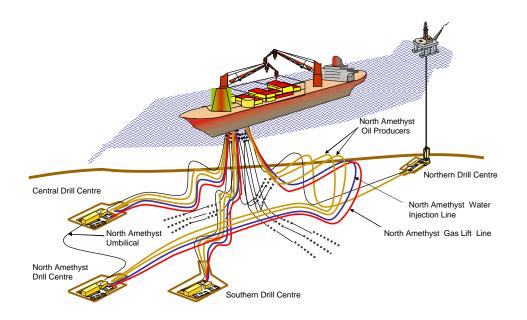


Figure 8-1 Option A North Amethyst Satellite Tie-back (Directly to FPSO)

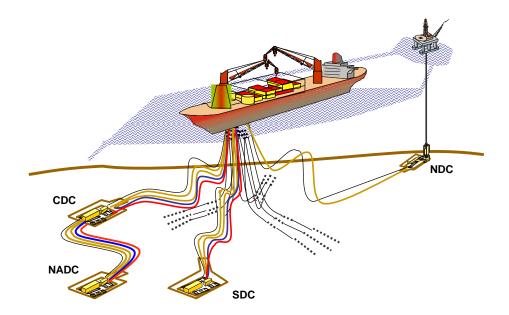


Figure 8-2 Option B North Amethyst Satellite Tie-back Via Central Drill Centre

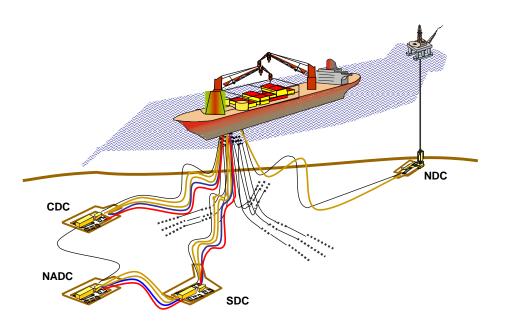


Figure 8-3 Option B North Amethyst Tie-back Via Southern Drill Centre

At this time, it is anticipated that the NADC will require seven to ten wells (four production wells and three to six water injection wells) with expansion capacity to sixteen wells. The glory hole for the North Amethyst Satellite Tie-back was constructed in 2007 following approval by the federal and provincial Ministers of Natural Resources.

8.1 Glory Hole Construction

Glory hole construction methods for the North Amethyst glory hole were mainly the same as those employed for development of the South Avalon Pool; that is, the glory hole was dredged using a trailing suction hopper dredging vessel. This type of dredger is a self-propelled ship which fills its hold or hopper during dredging while following a pre-set track. Dredged material was disposed of in the approved spoils disposal area used during construction of the glory holes for White Rose. However, the dimensions of the North Amethyst glory hole are different than those used for the White Rose project and from the dimensions proposed for the SWRX glory hole. The glory hole needed to accommodate the NADC was excavated to a measured depth of -9 to -11 metres below existing seabed level with a maximum "floor" dimension of 45 m by 80 m with 1 vertical by 3 horizontal graded sloped sides as required for stability and flowline ramps. The dimensions of the glory hole were modified to accommodate design evolution of the subsea equipment. Husky established through the course of preliminary FEED that critical clearances are required in some areas, particularly with respect to remotely

operated vehicle (ROV) access during the life of field, installation tolerances for major equipment, and drilling and completions interface requirements.

Specifically:

- Glory hole design accommodates required fixed moored rig heading of 290°;
- Equipment layout in glory hole minimizes Dropped Object risk for MODU crane;
- Improved ROV access to all components; and
- Increased depth allows for sump to accommodate excess cement.

The glory hole configuration for North Amethyst is indicated in Figure 8-4.

Figure 8-4 North Amethyst Glory Hole Layout

8.2 Subsea Equipment Installation

The subsea facilities at North Amethyst will include all equipment necessary for the safe and efficient operation and control of the subsea wells and transportation of production and injection fluids between the wells and the *SeaRose*. It is expected that two 10" oil production flowlines, one 9" water injection flowline, and one 4.25" gas lift flowline will be routed from the NADC either directly back to the *SeaRose* FPSO via new flow lines and new dedicated riser systems (Option A) or via new flow lines to the existing subsea infrastructure (Option B).

Similar to the White Rose Development, flowlines for North Amethyst will be laid on the seafloor and will be insulated for temperature and flow assurance purposes. Although it is currently anticipated that the umbilical and flowlines utilized for North Amethyst are anticipated to be of similar design to those installed during initial development of White Rose, a rigid pipeline option is under evaluation by the FEED team. Verification of the exact flowline design and routing, and internal diameters and length will be determined during the FEED process.

For both Options A and B, an electro-hydraulic multiplex (EHMUX) umbilical is expected to be routed through the Central Drill Centre (CDC). This umbilical will extend from a new extension subsea distribution unit (SDU) in the CDC and terminate at the SDU in the NADC. The nominal umbilical length has been determined to be 7.0 km. To extend the CDC umbilical to the NADC, the CDC will require modifications including a new extension SDU and mounting base, a control jumper between the extension and existing SDUs, and a control jumper between the extension SDU and the umbilical termination assembly (UTA).

Subsea facilities will utilize the same design as previously used in the White Rose field. The following is the anticipated subsea equipment requirements for the NADC:

- 8 two-slot TGB's;
- 7-10 Permanent Guide Bases (PGB);
- 7-10 XTrees (3 Production and 3-6 Water Injection) and assorted connections;
- 2 Manifold support foundation (MSF) , each with 4 piles;
- 2-3 Production Manifold modules;
- 2 Water Injection Manifold modules;
- 3 Insulated rigid spools;
- 3-6 Un-insulated rigid spools;
- 2 SDU bases (Anchored Pile Driven, one per SDU);
- 2 SDU's;

- 3 or 4 Gas Lift Jumpers;
- 1 Subsea Umbilical Termination Assembly (UTA) comes with umbilical;
- 7-10 SDU to XTree control jumpers;
- 3 or 4 XTree to manifold control jumpers;
- 1 UTA to SDU1 control jumper;
- 1 SDU1 to SDU2 control jumper.

Procedures for installation of subsea facilities and subsequent operations for North Amethyst are anticipated to be similar to those currently employed for the initial phase of the White Rose Development. Subsea installation and connections work in the North Amethyst glory hole will require use of divers and ROV technology. Once installation is completed, the system will be fully tested prior to being brought into service through the *SeaRose* FPSO infrastructure.

Husky intends to conduct a design review of the use of subsea multi-phase flow meters in the design of the NADC. This technology will be considered for use in conjunction with the existing test separation facilities as a means of conducting well testing and allocation on a well/ drill centre basis. Whenever well testing is not ongoing, it is anticipated that the test line will continue to be used for production to optimize production flow and mitigate wax formation in the line. Round trip pigging of the production and test lines will be extended from the *SeaRose* FPSO to the NADC drill centre.

Iceberg protection measures applied to the current White Rose Development will also be applied to North Amethyst including placement of wellheads, Xmas trees and manifolds in glory holes, with the top of the equipment having a minimum clearance of 2 to 3 m below the seabed level and use of flowline and umbilical weak link technology. In addition to use of glory holes and weak link technology for subsea installations, active iceberg management will be employed. The *White Rose Ice Management Plan* (WR-DAC-PR-0003 D1) will be updated to include the new NADC drill centre.

Iceberg risk studies completed for White Rose include a *Glory Hole Iceberg Scour Risk Evaluation* (C-Core R-03-018-011) which identified glory hole design parameters that would minimize the risk of iceberg scour. The design of the new glory hole is consistent with the design parameters described in the evaluation. The study, *Iceberg Risk to Pipelines at White Rose* (C-Core 00-C45 V2), is currently being reviewed to confirm that the risk of damage to flowlines does not exceed Husky's Target Levels of Safety as a result of adding North Amethyst.

8.3 Drilling and Completions

It is anticipated that Drilling and Completions activities will be carried out using existing White Rose processes and systems. The North Amethyst Satellite Tie-back will utilize well templates and wellhead systems similar to those used on the White Rose Development. At this time it is anticipated that the NADC will require seven to 10 wells comprised of four production wells and three to six water injection wells with expansion capacity within the glory hole to 16 wells.

In general the North Amethyst well design and drilling operations programs will be based on experience from the White Rose Development. Synthetic-based muds will be used to drill the intermediate and production hole sections. Best available proven technology will continue to be utilized to minimize synthetic drill mud on cuttings. Advanced directional drilling tools and systems will continue to be used to drill the deviated and horizontal wells required to develop this region of the field.

Existing White Rose cementing practices will also be applied to North Amethyst. White Rose drilling practices employed to drill the conductor and surface hole sections will be applied to North Amethyst to mitigate the impact of drill cuttings and cement spillage into the glory hole. Specifically, Guar gum sweeps, cuttings transport systems and reduced excess cement will be used in conjunction with a modified template system.

The North Amethyst well completions will be designed to maximize well productivity while maintaining necessary standards of risk and well integrity. Intelligent water injection and production wells may be utilized for North Amethyst. Intelligent completion technology is required for the water injection wells to control injection profiles into two reservoir intervals. The control of flow would be from a variable interval control valve operated hydraulically from the subsea pod via the subsea umbilical. Final design of the drilling program and the North Amethyst wells will be addressed in the individual Approval to Drill a Well (ADW) applications. Details of the completion design and installation plan will be outlined in the individual completion programs.

Early samples collected from the North Amethyst reservoir indicated that risk of significant sand production might be higher than that defined in the original White Rose design specification. Subsequent detailed analysis indicated that sand production from North Amethyst is not expected to exceed the current White Rose design specification. However, further sensitivity analysis is continuing. At this time, no additional protection or monitoring equipment is planned for installation on the FPSO. However, sand detection capability may be incorporated into the subsea production system to further monitor sand production.

8.4 **FPSO (Topsides/Turret) Modifications**

Should Option A tie-back be selected, modifications to the *SeaRose* turret, buoy and topsides to accommodate the new flowlines and umbilical from the NADC will be required. The details of the *SeaRose* modifications for Option A are provided in the White Rose Development Plan Amendment (Husky Document No. SR-SRT-RP-0003) submitted concurrently with this document.

Should North Amethyst be tied back to *SeaRose* through existing infrastructure (Option B), there will still be a requirement for some minor modifications on the *SeaRose*, mainly in the area of chemical injection and storage, and controls software. These modifications would not require *SeaRose* to come to a shore-based facility.

8.5 Northern Drill Centre Expansion

Simulation modeling predicts a higher Gas Oil Ratio (GOR) over time. To accommodate the increased gas injection requirements for North Amethyst and any other future tiebacks, the two spare well slots (NG3 and NG4) in the NDC are available. Development of these wells was approved as part of the core White Rose Development. If the NDC is expanded to accommodate North Amethyst gas, details of the final design of the NDC wells would be addressed in the individual Approval to Drill a Well (ADW) applications. Details of the completion design and installation plan would be outlined in the individual completion programs.

9.0 Operations and Maintenance

Should North Amethyst be tied back directly to *SeaRose* (Option A), there will be a requirement to shut down production during installation and commissioning of the new NADC drill centre and for implementation of the FPSO modifications. Alternatively, if North Amethyst is tied back through existing infrastructure (Option B), onshore modifications to *SeaRose* will not be required. However, *SeaRose* may still be brought to shore to implement the modifications to increase produced water and gas handling capacity. A description of these potential modifications is included in *White Rose Development Plan Amendment SeaRose FPSO Modifications* (Husky Document No. SR-SRT-RP-0003), submitted concurrently with this document.

Should onshore modifications be required, the *SeaRose* will be taken off station and brought to a facility in Newfoundland. It is anticipated that the *SeaRose* would be at shore for a maximum of four months during which time there would be no production from the White Rose field. However, offshore subsea installation activities in the NADC would proceed during the period that the *SeaRose* is at shore. Following return of the *SeaRose* to the White Rose field, the NADC drill centre would be commissioned and brought on line.

The existing organizational structure (offshore and onshore) will not be impacted as a result of development of the North Amethyst Satellite Tie-back. The existing Operating and Maintenance Procedures will be reviewed and revised as required to include the operation and maintenance requirements of North Amethyst.

The Ice Management Plan will also be reviewed and updated or modified as required to reflect the additional "target" for icebergs as a result of the development of the satellite drill center. Logistics, Communications and Contingency Plans should not be impacted as a result of development of the North Amethyst Satellite Tie-back.

10.0 Safety Analysis

The SeaRose FPSO Safety Plan approved by the C-NLOPB details the approach to, and results of, the risk assessment process for the SeaRose FPSO. Activities associated with development of the North Amethyst Satellite Tie-back will utilize Husky's formal safety assessment process. Existing Husky systems and processes for assessing risks of planned operations, modifications or changes will be used in assessing any identified risks related to the Tie-back. These processes include the Husky Management of Change Process and the Husky East Coast Risk Management Process. These processes will ensure that the risk profile of the projects tie-back to the SeaRose is not compromised and the Target Levels of Safety continue to be met.

A review of the impact of the North Amethyst Satellite Tie-back on safety studies and plans and the mitigation measures that will be implemented, has been submitted to the C-NLOPB as a separate report (Husky Document No. SR-HSE-RP-0003).

11.0 Development Costs

11.1 Capital Cost Estimates

This section discusses the capital cost estimates for glory hole development, subsea production systems, and the drilling/completions cost estimates for the North Amethyst Satellite Tie-back. All costs presented are in 2007 Canadian dollars.

11.1.1 Assumptions for Capital Cost Estimates

The capital cost estimates have been prepared under the following set of assumptions:

- The reservoir parameters for the North Amethyst reserves, technical basis, and scope of work are as described in this document.
- The tie-back will be executed in accordance with the management philosophies and schedule described in this document.

- All facilities, goods, and services will be acquired on a competitive basis in accordance with the approved Canada-Newfoundland and Labrador Benefits Plan.
- Regulatory approval and Project Sanction will be achieved in accordance with the timelines set out herein.

11.1.2 Capital Cost Estimates

The capital cost estimate for components of the North Amethyst Satellite Tie-back is in the range of approximately \$1.3 billion (no OPEX included) for either option discussed in this Plan. Cost estimates for the components are as follows:

•	Project Management and Engineering	\$74 M
•	SeaRose Modifications	\$72 M
•	Drilling and Completions (9 wells)	\$744 M
•	Glory Hole Construction	\$36 M
•	Subsea Production System	\$362 M

11.1.3 Operating Cost Implications

The North Amethyst Satellite Tie-back will not significantly increase White Rose operating costs. However, in addition to fixed OPEX, the addition of a new drill centre, additional wells, and new flowlines and umbilical will result in additional costs for inspection, maintenance and repairs.

Subsea inspections will increase proportionately in accordance with the count of drill centres and flowlines. Also, allowances must be made for well interventions and increased chemical usage due to the flow assurance challenges associated with the longer tie-back.

12.0 West White Rose Extension (WWRX)

Following drilling of the O-28Y well in the West Avalon Pool, it was estimated that this part of the White Rose field has recoverable oil resources of 120 million barrels on a P50 basis. At the present time Husky plans to develop this pool as a subsea tie-back to the *SeaRose*. Further delineation results, flow assurance studies and FEED, will determine the optimum flow line routings for the WWRX tie-back. Installation of WWRX subsea equipment will likely occur during the summer of 2010, concurrent with subsea

installation at the NADC. A White Rose Development Plan Amendment for WWRX will be submitted in due course.

13.0 References Cited

- N.R. Ainsworth, L.A. Riley and I.K. Sinclair. 2001. A Mid-Cretaceous (Upper Barremian -Turonian) Lithostratigraphic and Biostratigraphic Framework for the Hibernia Oilfield Reservoir Sequence, Jeanne d'Arc Basin, Grand Banks of Newfoundland. In *Petroleum Resources and Reservoirs of the Grand Banks, Eastern Canadian Margin,* Edited by R.N. Hiscott and A.J. Pulham.
- Armentrout, John M. 1999. Treatise of Petroleum Geology/Handbook of Petroleum Geology: Exploring for Oil and Gas Traps, Edited by Edward A. Beaumont and Norman H. Foster. Pages 4-1 — 4-123.
- Boyd Exploration Consultants Limited. 1997. Final report of the R/V Airgun Reflection 3-D Seismic Program, White Rose, Cape Race and North Ben Nevis, and PGS Exploration Final Survey Report White Rose 3-D Survey.

14.0 Documents Used in Preparation of the Development Plan

- North Amethyst Subsea Handover Package (SR-S-93-U-RP-00018-001)
- White Rose Functional Specification (WR-ENG-SP-001).

15.0 Acronyms

Term	Description
ADW	Approval to Drill a Well
API	American Petroleum Institute
ASME	American Society of Mechanical Engineers
bcf	billion cubic feet
Bbl/d	barrels per day
BN	Ben Nevis
BNA	Ben Nevis-Avalon
BRV	bulk rock volume
BS&W	base sediment and water
CA	Certifying Authority
CDC	Central Drill Centre
CMR	combinable magnetic resonance tool
C-NLOPB	Canada-Newfoundland and Labrador Offshore Petroleum Board

CSA	Canadian Standards Association
DA	Development Application
DGPS	Differential Global Positioning System
DNV	Det Norske Veritas
DST	drill stem test
EEM	environmental effects monitoring
EHMUX	electro-hydraulic multiplex umbilical
FA	facies associations
FEED	Front End Engineering Design
Fm	formation
FPSO	Floating Production, Storage and Offloading Facility
FVF	formation volume factor
GOR	gas oil ratio
GR	gamma ray
ISO	International Standards Organization
kPa	kilopascals
LWD	logging while drilling
Ма	million years
md	millidarcies
MDT	modular dynamic formation tester
MMbbls	million barrels
mmscf/d	million standard cubic feet per day
MODU	Mobile Offshore Drilling Unit
m/s	metres per second
mTVDss	metres true vertical depth subsea
NACE	National Association of Corrosion Engineers
NADC	North Amethyst Drill Centre
NDC	Northern Drill Centre
N:G	net to gross ratio
NPV	net present value
OGIP	original gas in place
OOIP	original oil in place
OWC	oil/water contact
PGB	permanent guide base
PVT	pressure, volume, temperature
Psi	pounds per square inch

ROV	remotely operated vehicle
Rs	solution gas-oil ratio
Rw	resistivity of water
RVP	Reid vapour pressure
S	seconds
SCAL	special core analysis
SDU SWRX	subsea distribution unit South White Rose Extension Tie-back
Sw	water saturation
TVD	true vertical depth
TGB	temporary guide base
UTA VFP	umbilical termination assembly vertical flow performance
WWRX	West White Rose Extension
XTree	Christmas (xmas) tree

Appendix A

Vertical Interference Test and Mini-DST Interpretation

Husky Energy

Schlumberger

MDT-VIT & MDT-Dual Packer Vertical Interference Test and mini-DST Interpretation

Company	Husky Oil Operations Limited
Field	Whiterose
Well	North Amethyst K-15

Date Logged	Nov. 3, 2006	By S. Thornhill, Smith, Khan
Date Processed	Feb. 20, 2006	By Vinay K. Mishra

Remarks	MDT-VIT
	Processed Interpretation
	by Schlumberger DCS

All interpretations are opinions based on inferences from electrical or other measurements and we cannot, and do not guarantee the accuracy or correctness of any interpretations and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, cost, damages or expenses incurred or sustained by anyone resulting from any interpretation made by any of our officers, agents or employees. These interpretations are also subject to clause 4 of our general terms and conditions as set out in our current price schedule.

1. Objectives

MDT-VIT and mini-DST tests were conducted at three stations in the well K-12 with the following objectives.

- 1. Determine the horizontal and vertical permeability (Kh & Kv) of the tested layers.
- 2. Determine the vertical communication between the sink and observation probes.

2. Results and Conclusion

- Based on the three tests, reservoir permeability varies in the range of 155-450md.
- Ratio of vertical permeability to horizontal permeability is higher than 0.12
- All the tests indicated almost zero skin factor
- Mini DST was carried out using MDT Dual packer module.
- Interference Test (VIT) was carried out with MDT dual probes, set 2.44m apart and Packer-probes combination.
- Pump Out module of the tool was used to create pressure pulses in the formation.
- Interpretation results for the three tests are summarized in the tables below.

Table 1: Results for VIT at 2390.0 m

Kh (md)	Kv (md)	Kh/Kv	Skin	Reservoir pressure at 2390m (kPa)
450	70	0.16	0.0	23883.57

Table 2: Results for VIT at 2415.0 m

Kh	Kv	Kh/Kv	Skin	Reservoir
(md)	(md)			pressure at
				2415m (kPa)
302	42	0.14	0.0	24036.06

Table 3: Results for Dual Packer Mini-DST at 2400 m

Kh (md)	Kv (md)	Kh/Kv	Skin	Reservoir pressure at 2400m (kPa)
155	18	0.12	0.1	23953.35

3. Discussion

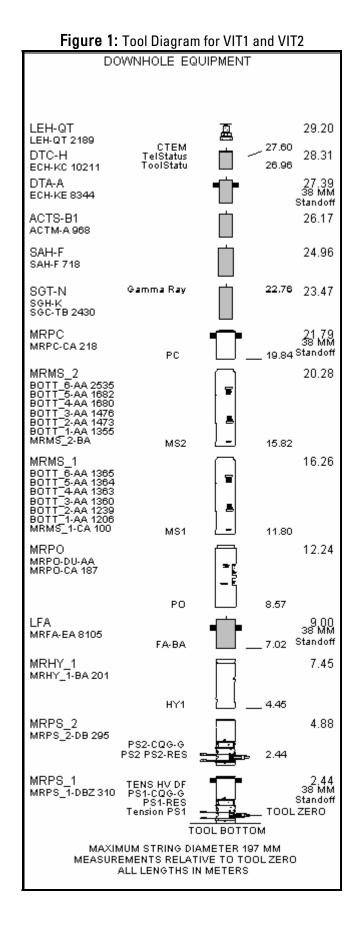
VIT1 & VIT2

Vertical interference test was carried out by creating pressure pulses in the reservoir with the sink probe and pumpout followed by pressure measurements at both, the sink probe and the observation probes. Pressure pulses were created by pumping out fluid from the reservoir to the wellbore. For VIT1 and VIT2 the observation probe (also called vertical probe) was set 2.44 m above the sink probe for each of the tests.

The data quality looks quite good giving confidence in the results. For observation probes, strain gauge data were used due to their better stabilization. Both the tests indicate medium to high permeability reservoir. The model out matched well with the recorded data. Basic tool configuration with probe depths for VIT1 is shown in the **Figure 5 to Figure 8**. Tool configuration and interpretation plots for VIT2 are shown in the **Figure 9 to Figure 12**.

Dual Packer Test (mini-DST)

In a separate MDT run Mini-DST was carried out using dual packer and pumpout modules of MDT. The distance between two packer elements is about one meter. Two single probes were also part of the tool string to record vertical interference test. In order to allow probe's contact with formation wall in presence of dual packer, the distance between packer and the probes were kept maximum.


Drawdown and build-up data was recorded with the dual packer module. In general the data quality looks good. During some part of the pumpout period, the pump was only pumping with pressure on one side causing build-up type of spikes. This might be due to filters plugging in the mud check valves of pumpout. Looking at the drawdown behavior when the pumpout data was normal, the pressure data was smoothed for the period pumpout was working in half cycle mode. This was achieved by removing the pressure spikes and averaging the rate over this period.

Model output plots from dual packer analysis are presented in the **Figure 13** to **Figure 18**. The build-up data indicate nice derivative curve. Probes data during this run indicate communication with the packer depth. The probes pressure data indicate high fluctuations, making it difficult to model. Qualitatively, it indicates average value of Kv/Kh more than 0.15 for the formation between 2400.0m and 2415.9m.

Interpretation of the VIT data was performed using Schlumberger software IPTT1.5. Based on openhole logs, single layer model was used in the analysis for all the tests. The input parameters used in the interpretation are presented in the **Table 4**.

DST/VIT Interpretation	n Input parameters P	lanning Data Shee	t
Company name	Husky Oil operations Ltd.		
Well Name:	K-15		
Job date:	27 Oct. 06		
Test type.	VIT 1	VIT2	DST-VIT3
Depth (m)	2415	2390	2400
	Reservoir/Wellbore	parameters	
Rock Type	clean laminated sand	C.L.Sand	C.L.Sand
Formation boundaries	22m (from 2398 to 2420)	12m (from 2379 to 2391)	22m (from 2398 to 2420)
Layer thickness			
Formation compressibility	2.57 E-6 1/kPa	2.57 E-6 1/kPa	2.57 E-6 1/kPa
Porosity	23%	23	23
Reservoir fluid type	oil	oil	oil
GOR	100 m3/m3	100 m3/m3	100 m3/m3
Oil FVF	1.24 res m3/m3	1.24 res m3/m3	1.24 res m3/m3
Viscosity			
Oil API density	35.8	35.8	35.8
Fluid compressibility			
Gas sp. Gr.	.7258	.7258	.7258
Any additional			
information			

Table 4: Input Parameters (Fluid/layer properties)

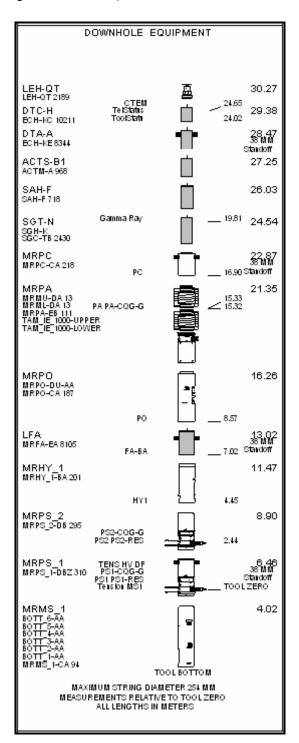


Figure 2: Tool Diagram for Dual Packer mini-DST

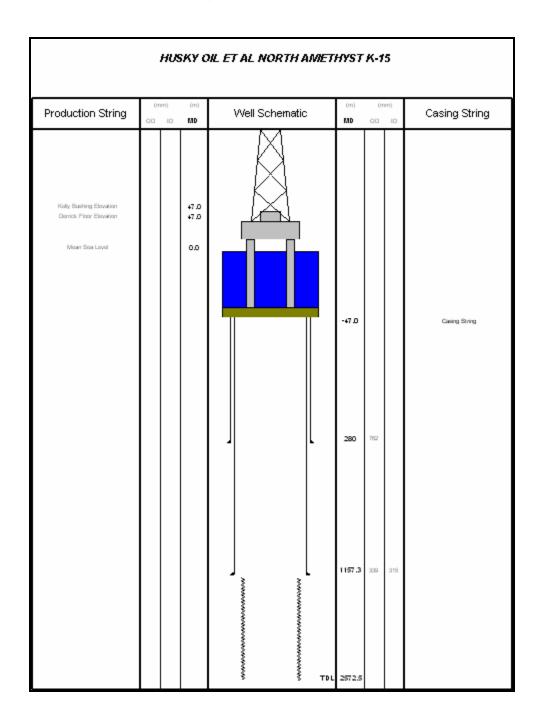


Figure 3: Well Schematic

Figure 4: Field Log Header

			N. Dunning			ed By	Witnessed By	
		Smith	Thornhill, Khan,			d By	Recorded By	
		hn's	432 St. John's	Location		iber	Unit Number	
	16:20		3-Nov-2006	Time	E)n Botto	Logger On Bottom	
	16:15		31-0ct-2006	Time	e	in Stopp	Circulation Stopped	
	8	8	89 degC	Maximum Recorded Temperatures	ed Ter) Record	Maximun	
®	® 8		8 9	RMF @ MRT	RMF	RT	RM @ MRT	
					RMO	RMF	Source	
ø		0		erature	d Temp	Measure	RMC @ Measured Temperature	
0		0		erature	d Temp	deasure	RMF @ Measured Temperature	
Ø		0		rature	Tempe	easured	RM @ Measured Temperature	
					Ť	Source Of Sample	—	N
			4.4 cm3		ΡH	SS	Fluid Loss	AU I
		s 69	1185 kg/m3	osity	Viscosity			D
			QVert Synthetic		P	id In Hol	Type Fluid In Hole	
			311.150 mm				Bit Size	
			1157.3 m		erger	chlumbe	Casing Schlumberger	
	1157.3 m	ଭ	339.700 mm	epth	9 9 9	riller Siz	Casing Driller Size @ Depth	
			2400 m			Interval	Top Log Interval	
			2430 m		ŭa	.og Inter	Bottom Log Interval	
FINAL PRINT			2460 m		pth	erger De	Schlumberger Depth	
			2566 m			iller	Depth Driller	
			TRIP 1 - RUN 4			ıber	Run Number	
			3-Nov-2006			Date	Logging Date	
Longidae	0.97 deg	0.0 		2		We Cor	Fie Loc	
	Hole Devi	м	srial No	ADI C.				
	R	DRILL FLOOR		Drilling Measured From:	0	any	on:	
47.0 m above Perm. Datum	R	DRILL FLOOR	I	Log Measured From:				
. □ ,		שבאת מבא נבעבנ	I	r emanent vatum.				
D.F. 47 m			174.800m E	Easting: 726174.800m E	TIO m		E RI	
G.L118.7 m			Northing: 5181120.000m N	orthing: 518				
Elev.: K.B. 47 m		ž	UTM ZONE: NAD 1983 Zone 22N	TM ZONE: N				
		Å	PS-PS-HY-LFA-PO-PA	S-PS-H	IJ	. NOF	1983	
					.		Zoi	
		G	VIT PRESSURES LOG	T PRE	<		ne 2:	
	STER	CTE	MODULAR DYNAMIC TESTER	ODULA	Ξ		2 N	
			(Ose		5		Field.	
HUSKY OIL ET AL NORTH AMETHYST K-15	RTH AN	NOR			S I		Well:	
D.	NS LTI	TIO	HUSKY OIL OPERATIONS LTD.	USKY (н	Company:	Com	
senumnerger								
								Π

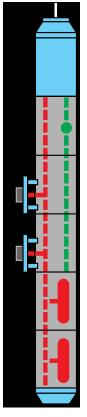
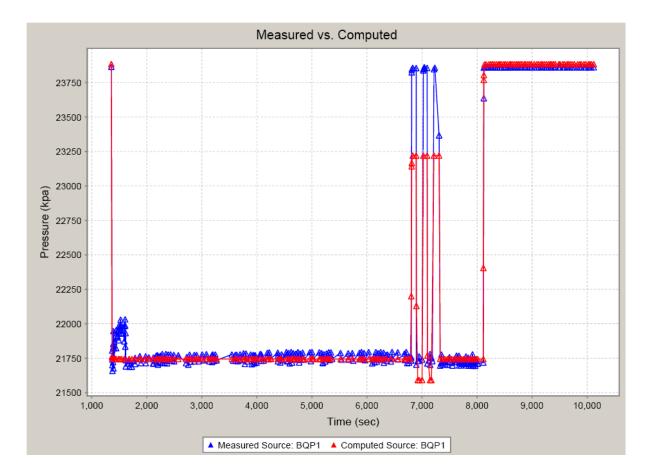
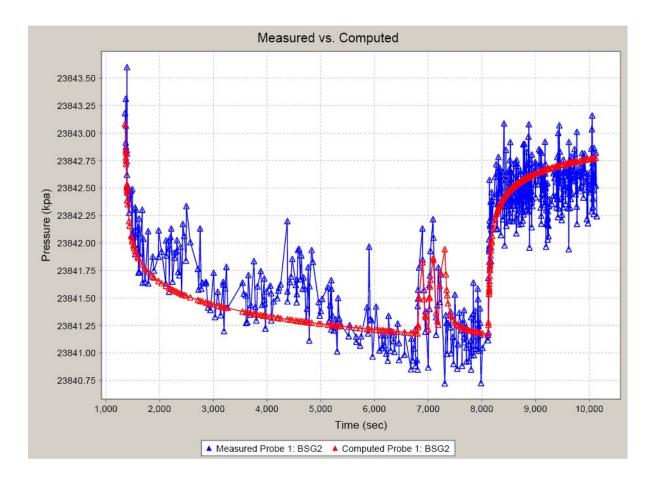

REMARKS: RUN NUMBER 1
Correlated to Platform Express log dated 1-Nov-2006
38mm standoffs run on MDT to help prevent differential sticking
22.5mm wear rings run for wear and standoff purposes
Probe 2 (upper probe) run with large diameter probe and packer
Probe 1 (lower probe) run with standard diameter probe and packer
Large hole extension kit run on upper probe
Packer module run with probes for vertical interference tests
Refer to general pretest summary for details
Pretests: 4 of 4 good tests with probes. 1 good test with MRPA
MRPA elements leaked after first test, damaged downhole
Well near vertical but deviation survey entered and used for MDT data
HTCS run for tool compression/tension purposes and LWF contingency.
Max tension pull at bottom: 4500lb
Head thermometers(3): 89, 90, 90 degC (Max depth reached 2430m)
Mud filtrate density: 828 kg/m3

Figure 5: Vertical Interpretation Test at 2390.0m MDT basic tool configuration


Vertical Probe : 2387.6 m

Horizontal probe:


2390.0 m

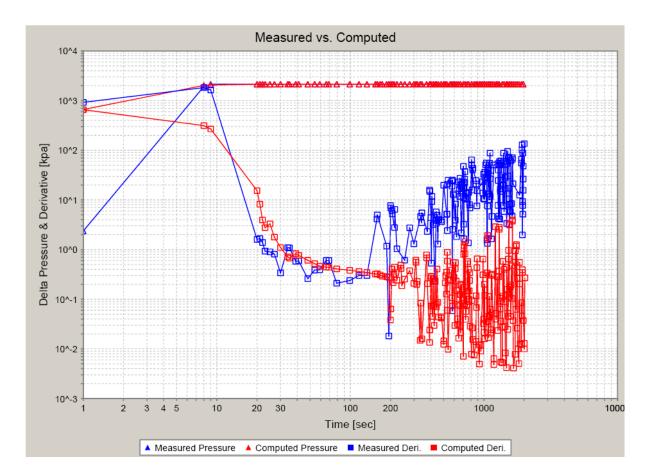
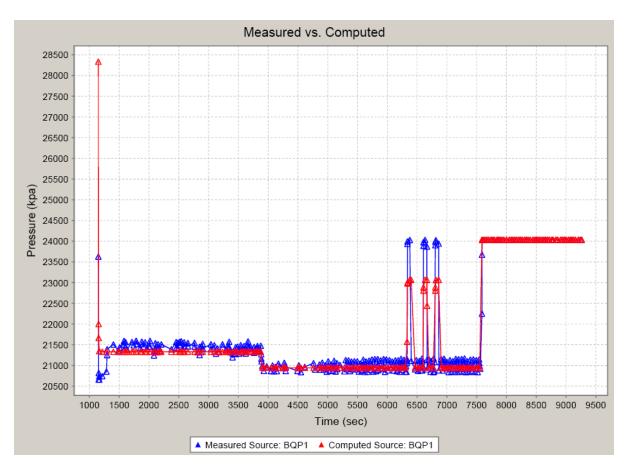

Figure 6: Horizontal probe pressure match (Test at 2390.0m)

Figure 7: Vertical probe pressure match (Test at 2390.0m)

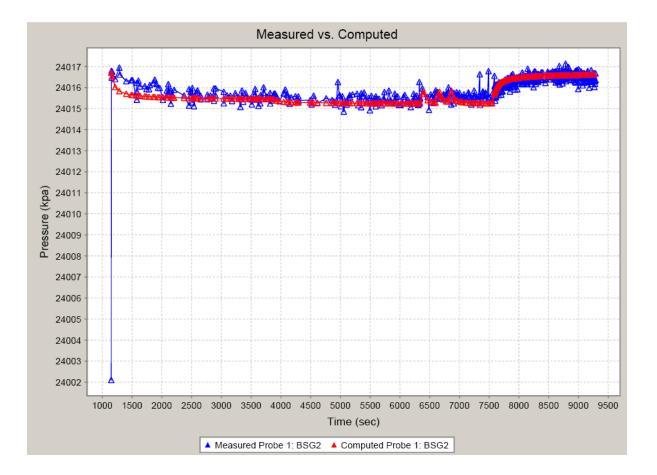
Figure 8: Pressure Derivative Plot (Build-up data) (Test at 2390.0m)




Figure 9: Vertical Interpretation Test at 2415.0m MDT basic tool configuration

Vertical Probe : 2412.6 m

Horizontal probe:


2415.0 m

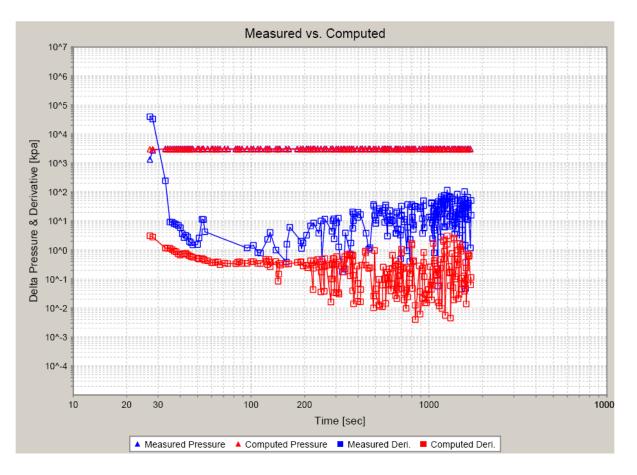
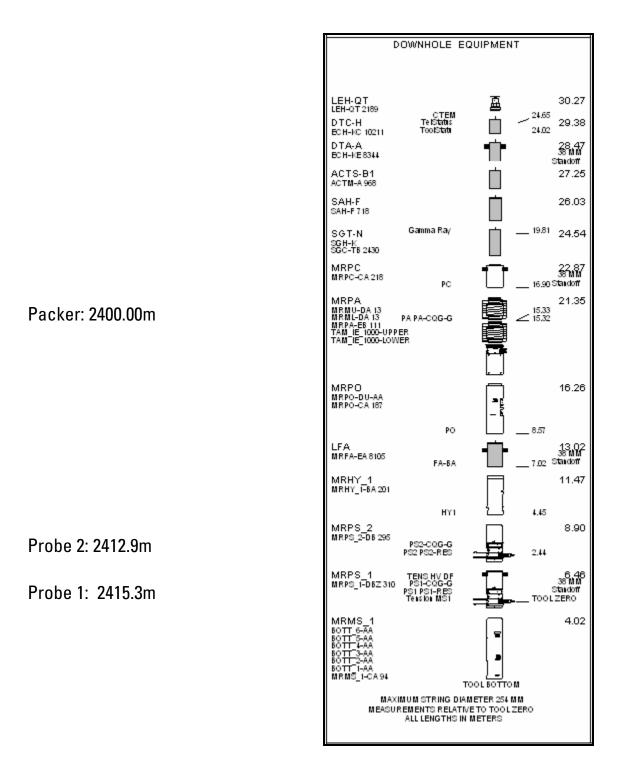
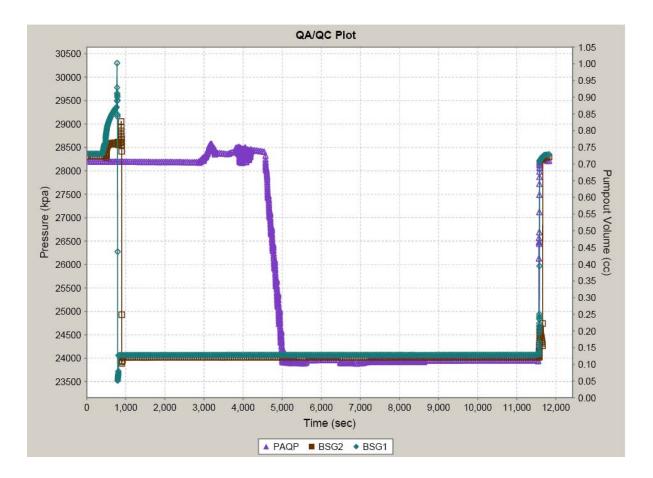
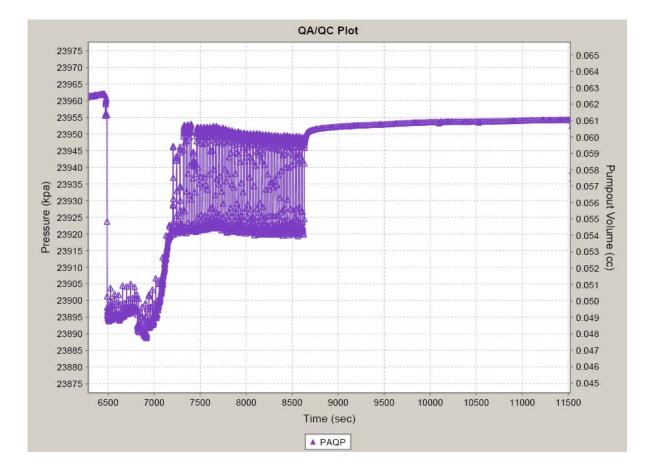
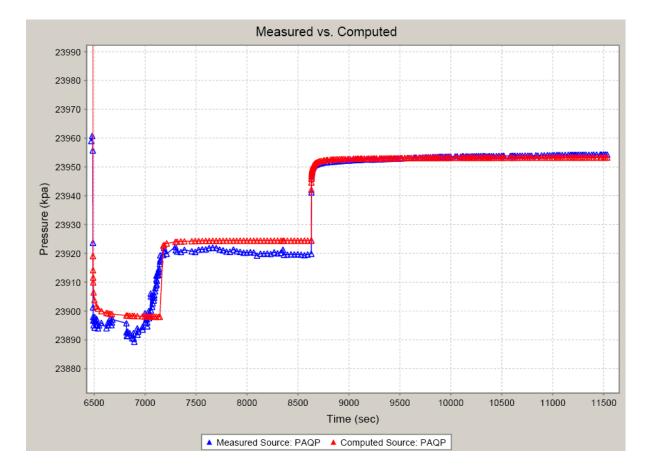


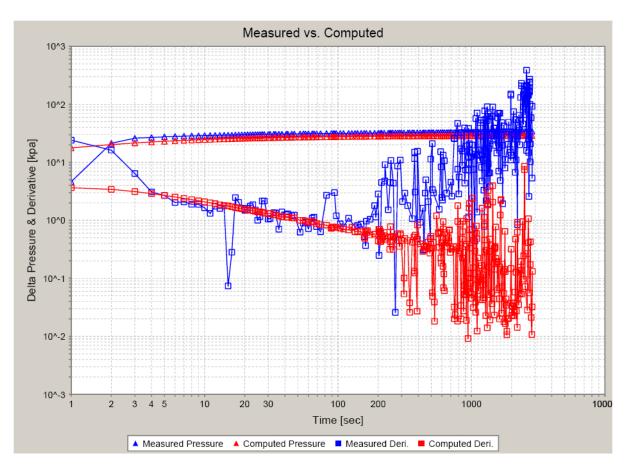
Figure 10: Horizontal probe pressure match (Test at 2415.0m)


Figure 11: Vertical probe pressure match (Test at 2415.0m)


Figure 12: Pressure Derivative Plot (Build-up data) (Test at 2415.0m)


Figure 13: Mini-DST and VIT Test at 2400.0m MDT tool configuration


Figure 14: Dual packer and probes pressure data (Test at 2400.0m)


Figure 15: Dual packer Pressure data (Test at 2400.0m)

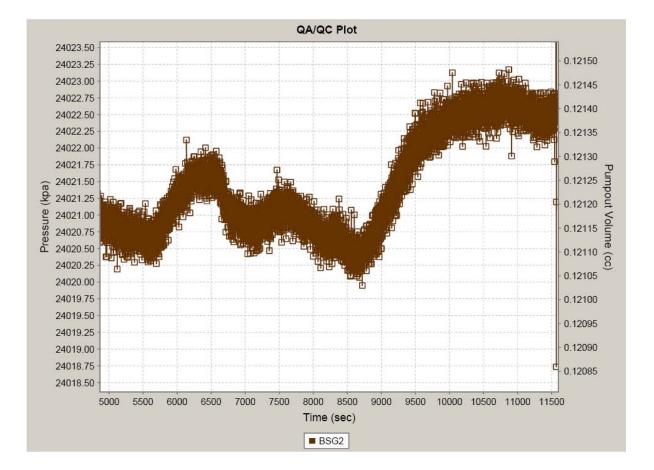


Figure 16: Dual Packer pressure match (Test at 2400.0m)

Figure 17: Pressure Derivative Plot (Build-up data) (Test at 2400.0m)

Figure 18: LQC of vertical probe pressure (Test at 2400.0m)

Appendix B

North Amethyst Reservoir Fluid Study

HUSKY ENERGY - NORTH AMETHYST RESERVOIR FLUID STUDY

FINAL REPORT

Prepared for

HUSKY ENERGY

By

Hycal Energy Research Laboratories Ltd. 1338A – 36th Avenue N.E. Calgary, Alberta Canada T2E 6T6 Tel: (403) 250 5800 www.hycal.com

April 20, 2007

Services performed by Hycal for this report are conducted in a manner consistent with recognized engineering standards and principles. Engineering judgement has been applied in developing the conclusions and/or recommendations contained in this report. Hycal accepts no liability for the use of the data, conclusions or recommendations provided.

I - RESERVOIR FLUID STUDY

TABLE OF CONTENTS	I -	i
List of Tables	I -	ii
List of Figures	Ι-	iii
RESULTS AND DISCUSSION	Ι-	1
APPENDIX A		
Sample Validation	I -	22
APPENDIX B		
Differential Liberation - Material Balance	Ι-	26
APPENDIX C		
Differential Liberation - Liberated Gas Analyses	Ι-	29

LIST OF TABLES

TABLE 1	SAMPLE COLLECTION DATA	I - 2
TABLE 2	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	I - 3
TABLE 3	OIL COMPRESSIBILITY @ 190.6 F (88.1 C)	I - 4
TABLE 4	CONSTANT COMPOSITION EXPANSION @ 190.6 F (88.1 C)	I - 5
TABLE 5	DIFFERENTIAL LIBERATION OIL PROPERTIES @ 190.6 F (88.1 C)	I - 6
TABLE 6	DIFFERENTIAL LIBERATION GAS PROPERTIES @ 190.6 F (88.1 C)	I - 7
TABLE 7	DIFFERENTIAL LIBERATION FLUID VISCOSITY @ 190.6 F (88.1 C)	I - 8
TABLE 8	COMPOSITIONAL ANALYSIS OF LIBERATED GAS @ 190.6 F (88.1 C)	I - 9
TABLE 9	COMPOSITIONAL ANALYSIS OF RESIDUAL OIL	I - 10
TABLE 10	CORRELATIONS OF MEASURED PVT LABORATORY DATA	I - 11
TABLE A1	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	I - 23
TABLE A2	COMPOSITIONAL ANALYSIS OF FLASHED OIL	I - 24
TABLE A3	COMPOSITIONAL ANALYSIS OF FLASHED GAS	I - 25
TABLE B1	DIFFERENTIAL LIBERATION @ 190.6 F (88.1 C) - MATERIAL BALANCE	I - 27
TABLE C1	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 2,663 psia (18.36 MPa)	I - 30
TABLE C2	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 2,313 psia (15.95 MPa)	I - 31
TABLE C3	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 1,963 psia (13.53 MPa)	I - 32
TABLE C4	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 1,613 psia (11.12 MPa)	I - 33
TABLE C5	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 1,263 psia (8.71 MPa)	I - 34
TABLE C6	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 963 psia (6.64 MPa)	I - 35
TABLE C7	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 663 psia (4.57 MPa)	I - 36
TABLE C8	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 413 psia (2.85 MPa)	I - 37
TABLE C9	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 163 psia (1.12 MPa)	I - 38
TABLE C10	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 78 psia (0.54 MPa)	I - 39
TABLE C11	DIFFERENTIAL LIBERATION GAS COMPOSITION @ 13 psia (0.09 MPa)	I - 40

LIST OF FIGURES

FIGURE	1	CONSTANT COMPOSITION EXPANSION @ 190.6 F (88.1 C)	I - 12
FIGURE		DIFFERENTIAL LIBERATION OIL DENSITY @, 190.6 F (88.1 C)	I - 13
FIGURE	3	DIFFERENTIAL LIBERATION OIL FORMATION VOLUME FACTOR @ 190.6 F (88.1 C	I - 14
FIGURE	4	DIFFERENTIAL LIBERATION GAS-OIL RATIOS @ 190.6 F (88.1 C)	I - 15
FIGURE	5	DIFFERENTIAL LIBERATION OIL VISCOSITY @ 190.6 F (88.1 C)	I - 16
FIGURE	6	DIFFERENTIAL LIBERATION GAS DEVIATION FACTOR @ 190.6 F (88.1 C)	I - 17
FIGURE	7	DIFFERENTIAL LIBERATION GAS VOLUME FACTORS @ 190.6 F (88.1 C)	I - 18
FIGURE	8	DIFFERENTIAL LIBERATION GAS GRAVITY @ 190.6 F (88.1 C)	I - 19
FIGURE	9	DIFFERENTIAL LIBERATION GAS VISCOSITY @ 190.6 F (88.1 C)	I - 20
FIGURE	10	LIBERATED GAS COMPOSITION PROFILE @ 190.6 F (88.1 C)	I - 21
FIGURE	B1	DIFFERENTIAL LIBERATION @ 190.6 F (88.1 C) - MATERIAL BALANCE	I - 28

RESULTS AND DISCUSSION

The reservoir fluid study was conducted on a BOTTOMHOLE sample prepared from separator oil and separator gas collected from Well K-15 of NORTH AMETHYST reservoir.

The sample collection data is provided in Table 1 and the sample validation data is given in Appendix A.

The PVT cell was charged with a portion of the live off sample and a constant composition expansion experiment (CCE) was performed on the oil. Table 3 provides the CCE results of the average compressibility of the reservoir fluid at pressures above the bubblepoint. Table 4 contains the complete CCE results with the exception of the data already presented in Table 3. Figure 1 is the relative total volume (V/Vsat) data and Y-function.

Table 5 contains various property measurements made on the differentially liberated oil below the bubblepoint including live oil density, oil formation volume factor and gas-oil ratios, which are shown in Figures 2 through 4, respectively.

Table 6 contains a summary of the properties of the differentially liberated gas including gas gravities, deviation factors, gas formation volume factors and gas expansion factors. The gas deviation factor (Z), gas formation volume factor and gas expansion factor, and gas gravity are shown in Figures 5 through 7, respectively.

Table 7 provides the results of the reservoir fluid viscosity measurements. This data is represented by Figures 8 and 9. Gas phase viscosity was calculated using the compositional data and the Lee, Gonzalez, Eakin correlation.

Table 8 summarizes the effluent gas compositions from each pressure stage during the differential liberation experiment. Figures 10 shows this data plotted on semi-log co-ordinates. Table 9 presents the compositional analysis of the residual oil at completion of the experiment.

Table 10 provides the correlations of the measured PVT Data.

Appendix B contains the material balance check performed for this experiment. It is displayed as formation volume factors so that the balance can be checked on a point by point basis. Appendix C contains the compositional analyses of the liberated gases from the differential liberation test.

SUMMARY

HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MAIN PVT RESULTS

INITIAL RESERVOIR CONDITIONS		
Reservoir Pressure	3460 psia	23.86 MPa
Reservoir Temperature:	190.58 F	88.1 C
CONSTANT COMPOSITION EXPANS	ION @ 190.6 F (88.1 C)	
Saturation Pressure	3032 psia	20.90 MPa
Compressibility @ Reservoir Pressure	1.1577E-05 psia ⁻¹	1.6791E-03 MPa ⁻¹
Compressibility @ Saturation Pressure	1.4065E-05 psia ⁻¹	2.0399E-03 MPa ⁻¹
DIFFERENTIAL LIBERATION @ 190.	6 F (88.1 C)	
At Saturation Pressure		
Oil Formation Volume Factor	1.3208 res.bbl/STB	$1.3208 \text{ res.m}^3/\text{m}^3$
Solution Gas-Oil Ratio	594.01 scf/STB	$105.79 \text{ m}^3/\text{m}^3$
Oil Density	0.7226 g/cm^3	722.6 kg/m^3
Oil Viscosity	0.640 cp	0.640 mPa.s
At Ambient Pressure		
Residual Oil Density	0.8061 g/cm^3	806.1 kg/m ³
Residual Oil Viscosity	2.506 cp	2.506 mPa.s
At Tank Conditions		
Residual Oil Density	0.8560 g/cm^3	856.0 kg/m ³
API Gravity	33.80	33.80
SINGLE-STAGE SEPARATOR TEST		
At Saturation Pressure		2 2
Oil Formation Volume Factor	1.3085 res.bbl/STB	$1.3085 \text{ res.m}^3/\text{m}^3$
Solution Gas-Oil Ratio	585.64 scf/STB	104.30 m3/m3
At Tank Conditions	2	2
Residual Oil Density	0.8430 g/cm^3	843.0 kg/m ³
API Gravity	36.35	36.35

TABLE 1HUSKY ENERGY - NORTH AMETHYSTWELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLERESERVOIR FLUID STUDYSAMPLE COLLECTION DATA

Project File:	2006-147		
Operator Name:	HUSKY ENERGY		
Pool or Zone:	BEN NEVIS - AVALON		
Field or Area:	NORTH AMETHYST		
Well Location:	K-15		
Fluid Sample:	BOTTOMHOLE		
Sampling Company:	Schlumberger		
Name of Sampler:	N/A		
Sampling Date:	6-Feb-06		
Sampling Point:	SUBSURFACE		
Sampling (Separator) Temperature:	190.6 F 88.1 C		
Sampling (Separator) Pressure:	3460.0 psia 23.86 MPa		
Reservoir Temperature: Reservoir Pressure: Initial Reservoir Pressure (Pi) Depth of Reported Pi	190.6 F 88.1 C 3460.0 psia 23.86 MPa 3460.0 psia 23.86 MPa 2390.0 mMD N/A mss		

TABLE 2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point (K)			Mole Fraction	Mass Fraction	Calculated Prop	oerties
(11)			Traction	Traction		
77.4	Nitrogen	N2	0.0017	0.0004	Total Sample	
194.6	Carbon Dioxide	CO2	0.0122	0.0047	i otal sampto	
212.8	Hydrogen Sulphide	H2S	0.0000	0.0000	Molecular Weight	113.92
111.5	Methane	C1	0.4349	0.0613		
184.3	Ethane	C2	0.0408	0.0108		
231.0	Propane	C3	0.0281	0.0109	C6+ Fraction	
261.5	i-Butane	i-C4	0.0058	0.0030		
272.6	n-Butane	n-C4	0.0168	0.0086	Molecular Weight	229.8
301.0	i-Pentane	i-C5	0.0076	0.0048	Mole Fraction	0.440
309.3	n-Pentane	n-C5	0.0117	0.0074	Density (g/cc)	0.866
309.3 - 342	Hexanes	C6	0.0174	0.0132	Bensky (gree)	0.000
342 - 371.4	Heptanes	C7	0.0181	0.0160		
371.4 - 398.8	Octanes	C8	0.0235	0.0235	C7+ Fraction	
398.8 - 423.8	Nonanes	C9	0.0238	0.0268	er · i racaon	
423.8 - 447	Decanes	C10	0.0218	0.0273	Molecular Weight	236.1
447 - 469.3	Undecanes	C11	0.0244	0.0314	Mole Fraction	0.420
469.3 - 488.2	Dodecanes	C12	0.0244	0.0374	Density (g/cc)	0.420
488.2 - 508.2	Tridecanes	C12 C13	0.0263	0.0403	Density (g/ee)	0.070
508.2 - 525.4	Tetradecanes	C14	0.0203	0.0355		
525.4 - 543.8	Pentadecanes	C14 C15	0.0175	0.0333	C12+ Fraction	
543.8 - 560.9	Hexadecanes	C15 C16	0.0161	0.0317	C12+ Fraction	
560.9 - 564.8	Heptadecanes	C10 C17	0.0101	0.0285	Molecular Weight	310.1
564.8 - 590.4	Octadecanes	C18	0.0137	0.0285	Mole Fraction	0.260
590.4 - 603.2	Nonadecanes	C18 C19	0.0137	0.0258	Density (g/cc)	0.200
603.2 - 617.5	Eicosanes	C19 C20	0.0089	0.0238	Density (g/cc)	0.095
617.5 - 630.4	Heneicosanes	C20 C21	0.0079	0.0213		
630.4 - 642.5	Docosanes	C21 C22	0.0079	0.0202		
642.5 - 653.2	Tricosanes	C22 C23	0.0068	0.0190		
653.2 - 664.3	Tetracosanes	C23 C24	0.0061	0.0190		
664.3 - 674.9		C24 C25	0.0060	0.0178		
	Pentacosanes	C25 C26		0.0182		
674.9 - 685.4	Hexacosanes		0.0054			
685.4 - 695.4	Heptacosanes	C27 C28	0.0051	0.0168		
695.4 - 704.9 704.9 - 714.3	Octacosanes	C28 C29	0.0051 0.0049	0.0174 0.0173		
	Nonacosanes					
Above 714.3	Tricontanes Plus	C30+	0.0507	0.2636		
322.0	Cyclopentane	C5H10	0.0019	0.0012		
345.4	Methylcyclopentane	C6H12	0.0086	0.0063		
354.3	Cyclohexane	C6H12	0.0073	0.0054		
374.3	Methylcyclohexane	C7H14	0.0103	0.0089		
252.2	D	COLL	0.00(2	0.0042		
353.2	Benzene	C6H6	0.0063	0.0043		
383.8	Toluene	C7H8	0.0082	0.0066		
409.3 - 412	Ethylbenzene & p,m-Xylene	C8H10	0.0029	0.0027		
417.5	o-Xylene	C8H10	0.0019	0.0017		
442.0	1, 2, 4-Trimethylbenzene	C9H12	0.0034	0.0035		

TABLE 3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY OIL COMPRESSIBILITY @ 190.6 F (88.1 C)

Pressur	Average	
From	То	Compressibility
(psia)	(psia)	(psi ⁻¹)
5013	4713	9.2284E-06
4713	4413	9.3850E-06
4413	4113	9.6431E-06
4113	3813	1.0046E-05
3813	3513	1.0638E-05
3513	3213	1.1577E-05
3213	3032 Psat	1.4065E-05

Pressure	Average		
From (MPa)	To (MPa)	Compressibility (MPa ⁻¹)	
34.56	32.49	1.3385E-03	
32.49	30.42	1.3612E-03	
30.42	28.36	1.3986E-03	
28.36	26.29	1.4571E-03	
26.29	24.22	1.5429E-03	
24.22	22.15	1.6791E-03	
22.15	20.90 Psat	2.0399E-03	

Psat - Saturation Pressure

TABLE 4 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT COMPOSITION EXPANSION @ 190.6 F (88.1 C)

Pressure		RelativeVolume	Y-Function	Fluid Density
(psia)	(MPa)	[1]	[1] [2]	
5013	34.56	0.979481		0.7378
4713	32.49	0.982201		0.7357
4413	30.42	0.984974		0.7337
4113	28.36	0.987832		0.7315
3813	26.29	0.990818		0.7293
3513	24.22	0.993990		0.7270
3213	22.15	0.997454		0.7245
3032 Psat	20.90	1.000000		0.7226
2918	20.12	1.011469	3.4067	
2819	19.43	1.022474	3.3623	
2665	18.37	1.041819	3.2933	
2492	17.18	1.067389	3.2158	
2268	15.64	1.108135	3.1155	
1999	13.78	1.172559	2.9950	
1633	11.26	1.302651	2.8311	
1391	9.59	1.433369	2.7227	
1133	7.81	1.643021	2.6071	
983	6.78	1.820864	2.5399	
826	5.69	2.081737	2.4696	
713	4.91	2.344994	2.4190	
595	4.10	2.731691	2.3661	
	534 3.68 3.000998 2.3388		2.3388	
534	3.51	3.125104	2.3280	

Psat - Saturation Pressure

TABLE 5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION OIL PROPERTIES @ 190.6 F (88.1 C)

Press		Oil	Oil Formation	Total Formation	Gas-Oil Ratio		Gas-O	il Ratio
(psia)	(MPa)	Density (g/cm³)	Volume Factor [1]	Volume Factor [2]	Solution (scf/STB)	Liberated (scf/STB)	Solution (m³/m³)	Liberated (m³/m³)
5012	24.50	0.7279	1 2027	1 2027	504.01	0.00	105 70	0.00
5013	34.56	0.7378	1.2937	1.2937	594.01	0.00	105.79	0.00
4713	32.49	0.7357	1.2973	1.2973	594.01	0.00	105.79	0.00
4413	30.42	0.7337	1.3009	1.3009	594.01	0.00	105.79	0.00
4113	28.36	0.7315	1.3047	1.3047	594.01	0.00	105.79	0.00
3813	26.29	0.7293	1.3087	1.3087	594.01	0.00	105.79	0.00
3513	24.22	0.7270	1.3129	1.3129	594.01	0.00	105.79	0.00
3213	22.15	0.7245	1.3174	1.3174	594.01	0.00	105.79	0.00
3032 Psat	20.90	0.7226	1.3208	1.3208	594.01	0.00	105.79	0.00
2663	18.36	0.7306	1.2951	1.3529	539.90	54.11	96.16	9.64
2313	15.95	0.7363	1.2702	1.4182	474.32	119.69	84.48	21.32
1963	13.53	0.7432	1.2447	1.5166	408.18	185.83	72.70	33.10
1613	11.12	0.7496	1.2207	1.6736	341.45	252.56	60.81	44.98
1263	8.71	0.7572	1.1951	1.9461	270.31	323.70	48.14	57.65
963	6.64	0.7640	1.1739	2.3597	209.50	384.51	37.31	68.48
663	4.57	0.7704	1.1532	3.1545	153.15	440.86	27.28	78.52
413	2.85	0.7764	1.1341	4.7133	106.42	487.59	18.95	86.84
163	1.12	0.7850	1.1089	10.8811	56.21	537.80	10.01	95.78
78	0.54	0.7889	1.0962	20.9787	33.73	560.28	6.01	99.79
13	0.09	0.8061	1.0640	76.5775	0.00	594.01	0.00	105.79
13	0.09	0.0001	1.0040	10.3773	0.00	594.01	0.00	105.79

[1] Barrels (Cubic meters) of oil at indicated pressure and temperature per barrel (cubic meter) of residual oil @ 60 F (288.7 K).

[2] Total barrels (cubic meters) of oil and liberated gas at the indicated pressure and temperature per barrel (cubic meter) of residual oil @ 60 F (288.7 K).

Psat - Saturation Pressure

- Tank conditions: 60 F (288.7 K) @ 13 psia (0.0896 MPa); Standard conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa).

TABLE 6 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS PROPERTIES @ 190.6 F (88.1 C)

Pressure		Gas Gravity		Gas	Gas Deviation	Gas Formation	Gas Expansion
1105	Incremental Cumulative Density		Incremental Cumulative		Factor	Volume Factor	Factor
(psia)	(MPa)	(Air = 1)	(Air = 1)	(g/cm³)	(-)	[1]	[2]
5012	24.56						
5013	34.56						
4713	32.49						
4413	30.42						
4113	28.36						
3813	26.29						
3513	24.22						
3213	22.15						
3032 Psat	20.90						
2663	18.36	0.6889	0.6889	0.1396	0.8735	0.0060	166.569
2313	15.95	0.6680	0.6774	0.1170	0.8780	0.0069	144.046
1963	13.53	0.6624	0.6721	0.0979	0.8827	0.0082	121.726
1613	11.12	0.6654	0.6703	0.0802	0.8901	0.0101	99.331
1263	8.71	0.6699	0.6702	0.0622	0.9037	0.0130	76.763
963	6.64	0.6824	0.6721	0.0476	0.9187	0.0173	57.754
663	4.57	0.7103	0.6770	0.0334	0.9363	0.0255	39.234
413	2.85	0.7572	0.6847	0.0218	0.9536	0.0412	24.263
163	1.12	0.8847	0.7034	0.0098	0.9744	0.1020	9.802
78	0.54	1.0547	0.7174	0.0056	0.9822	0.1993	5.019
13	0.09	1.4899	0.7611	0.0013	0.9822	0.7138	1.401
15	0.09	1.4899	0.7011	0.0015	0.9931	0.7138	1.401

[1] Cubic feet (meters) of gas at indicated pressure and temperature per cubic feet (meter) @ standard conditions

[2] Cubic feet (meters) of gas @ standard conditions per cubic feet (meter) @ indicated pressure and temperature.

Psat - Saturation pressure

- Standard conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE 7 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION FLUID VISCOSITY @ 190.6 F (88.1 C)

Pres	sure	Oil Viscosity	Gas Viscosity	Oil - Gas
(psia)	(psia) (MPa)		(cp=mPa.s)	Viscosity Ratio
4513	31.12	0.694		
4013	27.67	0.676		
3513	24.22	0.658		
3032 Psat	24.22 20.90	0.638		
			0.01002	27.24
2663	18.36	0.703	0.01883	37.34
2313	15.95	0.775	0.01756	44.16
1963	13.53	0.864	0.01656	52.21
1613	11.12	0.961	0.01569	61.25
1263	8.71	1.098	0.01491	73.61
963	6.64	1.254	0.01431	87.68
663	4.57	1.440	0.01372	104.97
413	2.85	1.668	0.01318	126.58
163	1.12	1.985	0.01235	160.75
78	0.54	2.159	0.01160	186.18
13	0.09	2.506	0.01015	246.91
10		1 2.000		
Psat - Saturation Pr	essure			
	••••••			

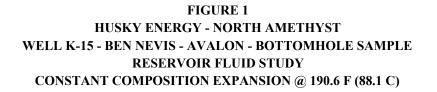
TABLE 8 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF LIBERATED GAS @ 190.6 F (88.1 C)

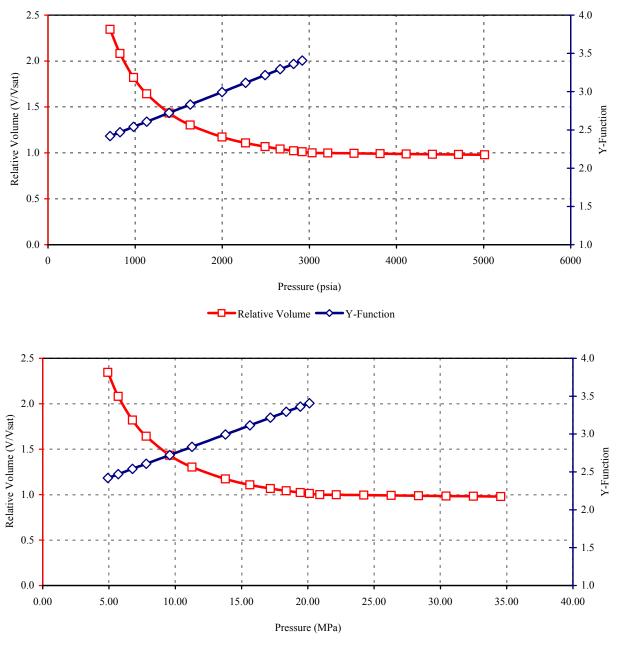
		Differential Liberation Stage Pressure (psia/MPa)									
Component	2663	2313	1963	1613	1263	963	663	413	163	78	13
	18.36	15.95	13.53	11.12	8.71	6.64	4.57	2.85	1.12	0.54	0.09
N2	0.0042	0.0039	0.0033	0.0027	0.0020	0.0014	0.0009	0.0005	0.0002	0.0002	0.0001
CO2	0.0154	0.0162	0.0171	0.0181	0.0191	0.0212	0.0247	0.0274	0.0324	0.0371	0.0142
H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C1	0.8804	0.8891	0.8909	0.8847	0.8786	0.8654	0.8370	0.7919	0.6659	0.4935	0.1225
C2	0.0413	0.0434	0.0442	0.0488	0.0527	0.0591	0.0721	0.0911	0.1398	0.2021	0.1467
C3	0.0202	0.0194	0.0198	0.0215	0.0231	0.0259	0.0319	0.0434	0.0816	0.1398	0.5133
i-C4	0.0038	0.0031	0.0030	0.0032	0.0033	0.0036	0.0044	0.0061	0.0119	0.0221	0.0374
n-C4	0.0104	0.0081	0.0074	0.0073	0.0075	0.0085	0.0105	0.0147	0.0288	0.0529	0.0973
i-C5	0.0039	0.0026	0.0021	0.0021	0.0022	0.0025	0.0032	0.0043	0.0073	0.0107	0.0150
n-C5	0.0050	0.0033	0.0027	0.0028	0.0028	0.0031	0.0039	0.0053	0.0083	0.0121	0.0173
C6	0.0053	0.0031	0.0025	0.0024	0.0024	0.0025	0.0028	0.0037	0.0068	0.0099	0.0127
C7+	0.0101	0.0078	0.0070	0.0064	0.0063	0.0070	0.0086	0.0117	0.0168	0.0197	0.0235
									1		
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Calculated Properties of	Total Sample (a) Standard Co	onditions								
MW (g/mol)	19.95	19.35	19.18	19.27	19.40	19.76	20.57	21.93	25.63	30.55	43.15
Gravity (Air=1.0)	0.6889	0.6680	0.6624	0.6654	0.6699	0.6824	0.7103	0.7572	0.8847	1.0547	1.4899
Calculated Properties of	C7+@Standa	rd Conditions									
MW (g/mol)	96.61	96.69	96.98	97.25	96.85	96.77	97.05	97.04	96.57	96.36	96.08
Density (g/cc)	0.7232	0.7234	0.7240	0.7245	0.7237	0.7235	0.7241	0.7241	0.7231	0.7227	0.7221

TABLE 9 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESIDUAL OIL

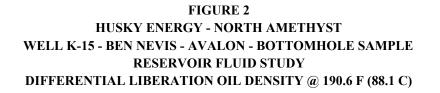
Boiling Point			Mole	Mass	Calculated Properties	
(K)	I		Fraction	Fraction		
77.4	NT:	212	0.0000	0.0000	T (16)	
77.4 194.6	Nitrogen Carbon Dioxide	N2 CO2	0.0000 0.0000	0.0000 0.0000	Total Sample	
212.8		H2S		0.0000	Molecular Weight	229.29
	Hydrogen Sulphide		0.0000	0.0000	Molecular weight	229.25
111.5	Methane	C1 C2	0.0000			
184.3	Ethane		0.0000	0.0000		
231.0	Propane	C3	0.0028	0.0005	C6+ Fraction	
261.5	i-Butane	i-C4	0.0023	0.0006		225.4
272.6	n-Butane	n-C4	0.0097	0.0025	Molecular Weight	235.4
301.0	i-Pentane	i-C5	0.0077	0.0024	Mole Fraction	0.963
309.3	n-Pentane	n-C5	0.0136	0.0043	Density (g/cc)	0.832
309.3 - 342	Hexanes	C6	0.0274	0.0103		
342 - 371.4	Heptanes	C7	0.0347	0.0152		
371.4 - 398.8	Octanes	C8	0.0457	0.0228	C7+ Fraction	
398.8 - 423.8	Nonanes	C9	0.0533	0.0298		
423.8 - 447	Decanes	C10	0.0576	0.0358	Molecular Weight	240.3
447 - 469.3	Undecanes	C11	0.0544	0.0349	Mole Fraction	0.933
469.3 - 488.2	Dodecanes	C12	0.0584	0.0410	Density (g/cc)	0.836
488.2 - 508.2	Tridecanes	C13	0.0594	0.0454		
508.2 - 525.4	Tetradecanes	C14	0.0497	0.0412		
525.4 - 543.8	Pentadecanes	C15	0.0420	0.0378	C12+ Fraction	
543.8 - 560.9	Hexadecanes	C16	0.0389	0.0377		
560.9 - 564.8	Heptadecanes	C17	0.0317	0.0327	Molecular Weight	308.0
564.8 - 590.4	Octadecanes	C18	0.0324	0.0355	Mole Fraction	0.598
590.4 - 603.2	Nonadecanes	C19	0.0275	0.0316	Density (g/cc)	0.869
603.2 - 617.5	Eicosanes	C20	0.0212	0.0254		
617.5 - 630.4	Heneicosanes	C21	0.0187	0.0238		
630.4 - 642.5	Docosanes	C22	0.0172	0.0228		
642.5 - 653.2	Tricosanes	C23	0.0158	0.0219		
653.2 - 664.3	Tetracosanes	C24	0.0141	0.0204		
664.3 - 674.9	Pentacosanes	C25	0.0136	0.0204		
674.9 - 685.4	Hexacosanes	C26	0.0122	0.0190		
685.4 - 695.4	Heptacosanes	C27	0.0112	0.0183		
695.4 - 704.9	Octacosanes	C28	0.0110	0.0186		
704.9 - 714.3	Nonacosanes	C29	0.0102	0.0180		
Above 714.3	Tricontanes Plus	C30+	0.1134	0.2929		
10000 /14.5		0.501	0.1154	0.2727		
322.0	Cyclopentane	C5H10	0.0033	0.0010		
345.4	Methylcyclopentane	C6H12	0.0096	0.0035		
354.3	Cyclohexane	C6H12	0.0132	0.0048		
374.3	Methylcyclohexane	C7H14	0.0204	0.0087		
2,2						
353.2	Benzene	C6H6	0.0118	0.0040		
383.8	Toluene	C7H8	0.0205	0.0082		
409.3 - 412	Ethylbenzene & p,m-Xylene	C8H10	0.0057	0.0026		
417.5	o-Xylene	C8H10	0.0040	0.0019		
442.0	1, 2, 4-Trimethylbenzene	C9H12	0.0038	0.0020		
Total	· ·	-	1.0000	1.0000		

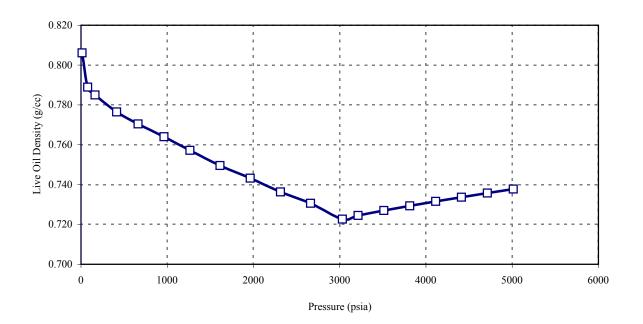
RESERVOIR FLUID STUDY

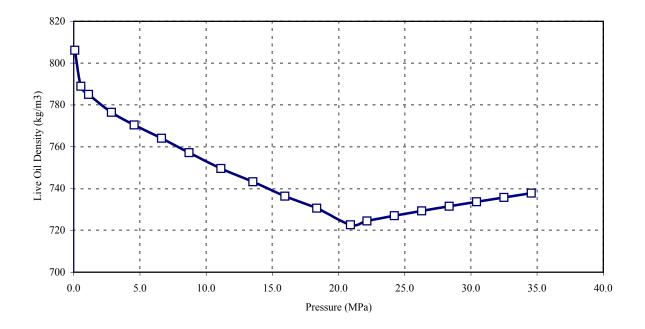


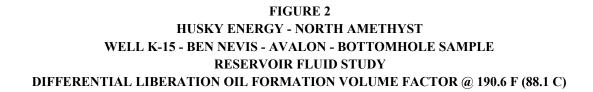

TABLE 10 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CORRELATIONS OF MEASURED PVT LABORATORY DATA

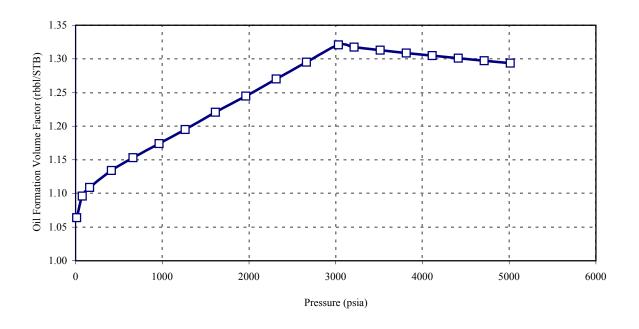
CONSTANT COMPOSITIO	UN EXPANSI	UN (2) 190.6 F (88.1 C)
Relative Volume (V/Vsat)	$(P \ge Psat)$	y=(-0.020779*x^2 + 1.732761*x + 1.305946)/(1.808251*x + 1.210123)
		R Squared = 0.996525
Relative Volume (V/Vsat)	$(P \le Psat)$	y=(1.198371*x^2 + 2.591509*x + 2.963957)/(6.787911*x + -0.042878)
		R Squared = 0.999996
DIFFERENTIAL LIBERA	ГІО N @ 190.6	F (88.1 C)
Live Oil Density (g/cc)	$(P \ge Psat)$	y=(0.016189*x^2 + 1.526916*x + 0.994195)/(2.018840*x + 1.492144)
		R Squared = 0.999761
Live Oil Density (g/cc)	$(P \le Psat)$	y=(-1.945116*x^2 + 25.383147*x + 0.243755)/(32.486345*x + 0.298158)
		R Squared = 0.999336
Oil FVF [1]	$(P \ge Psat)$	$y=(-0.032861*x^2 + 2.582764*x + 1.927707)/(2.036328*x + 1.354329)$
		R Squared = 0.999798
Oil FVF [1]	$(P \le Psat)$	y=(0.320476*x^2 + 1.676053*x + 0.016304)/(1.508507*x + 0.015609)
		R Squared = 0.999951
GOR (vol/vol)	$(P \le Psat)$	y=(57.085208*x^2 + 2.840529*x + -0.012996)/(0.546822*x + 0.001828)
		R Squared = 0.999408
Oil Viscosity (cp=mPa.s)	$(P \ge Psat)$	y=(0.245314*x^2 + 3.757580*x + 0.000354)/(5.341867*x + 0.924598)
		R Squared = 0.995839
Oil Viscosity (cp=mPa.s)	$(P \le Psat)$	$y=(-1.951017*x^2 + 4.484478*x + 1.276190)/(5.851316*x + 0.119205)$
		R Squared = 0.999787
y is the measured parameter	and $x = P/Psat$, dimensionless
		pressure and temperature per barrel (cubic meter) of residual oil @ 60 F (288.7 K).
[2] Cubic feet (meters) of gas	at indicated pr	ressure and temperature per cubic feet (meter) @ standard conditions

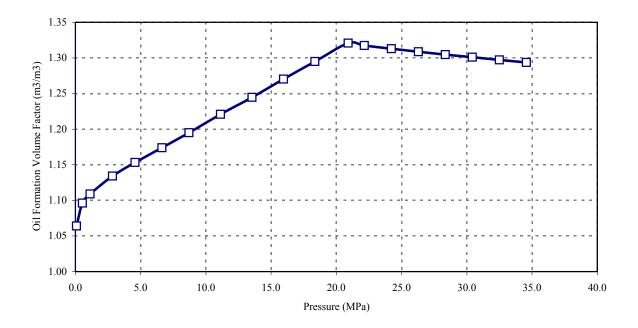

CONSTANT COMPOSITION EXPANSION @ 190.6 F (88.1 C)

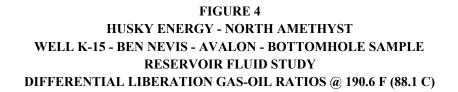


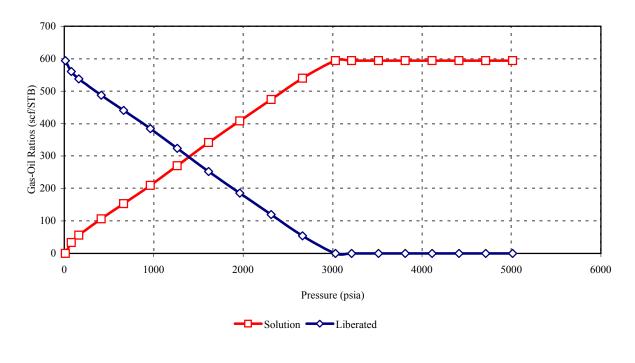


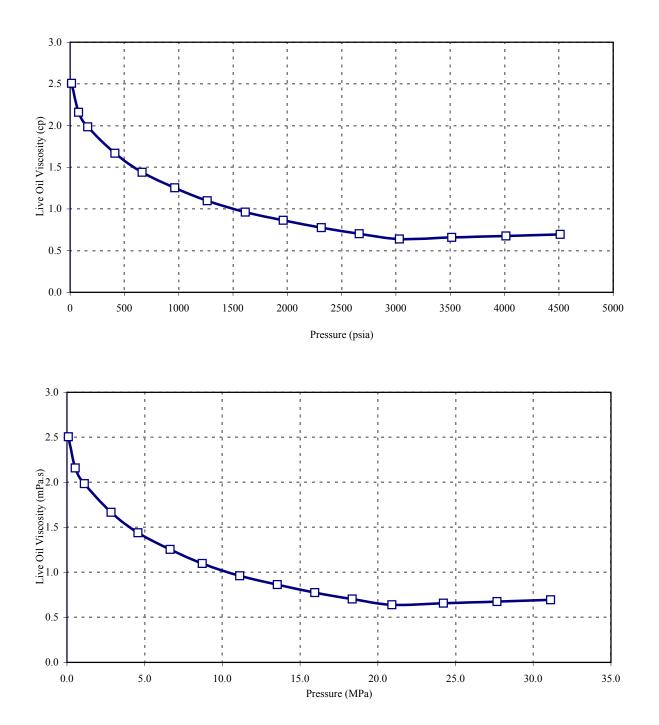

- Relative Volume - Y-Function

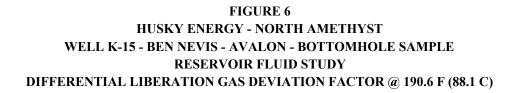


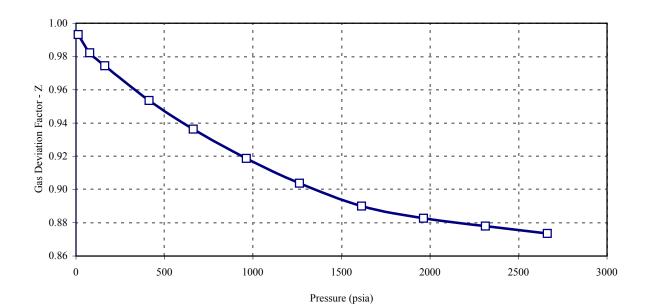


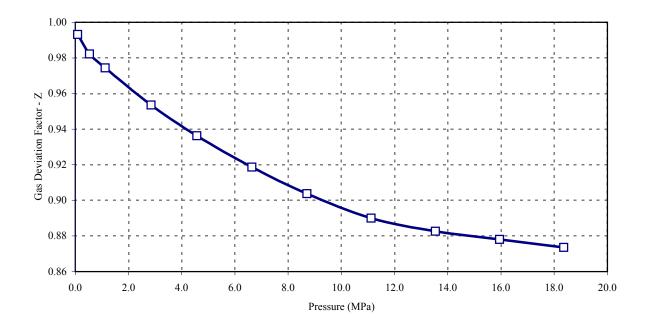


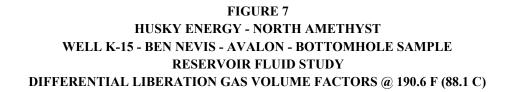


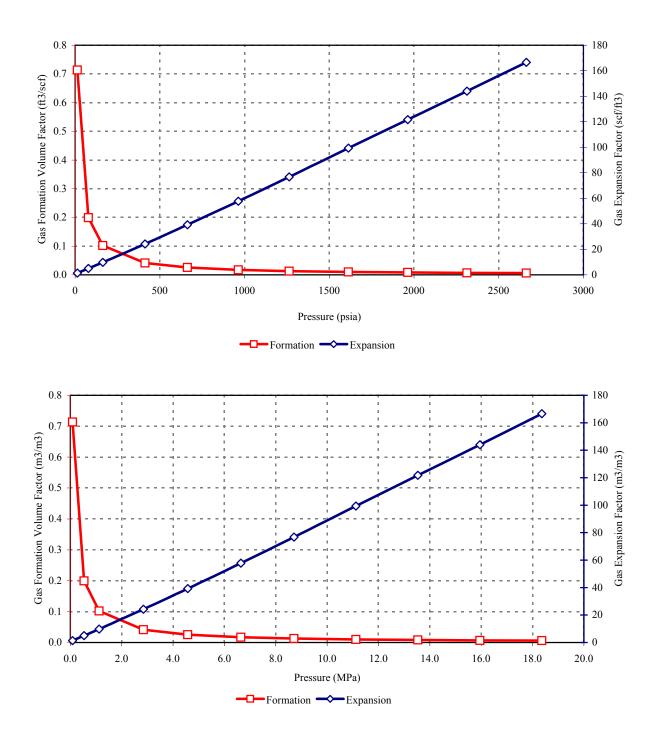


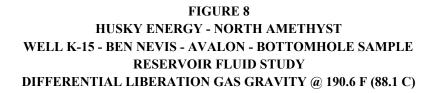


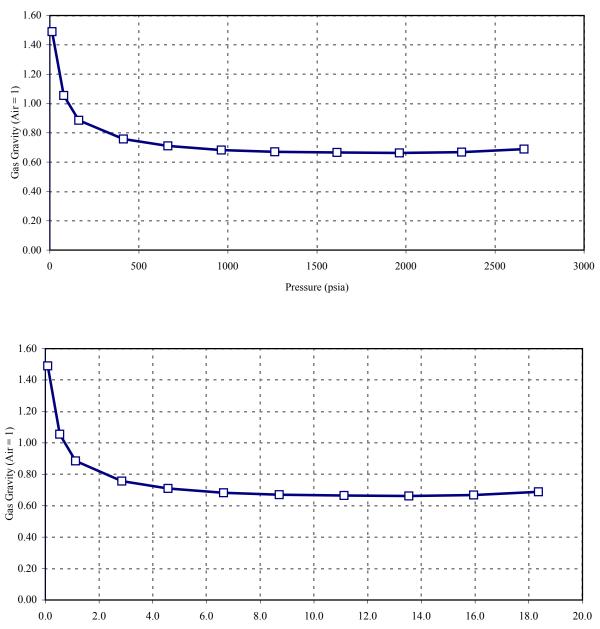


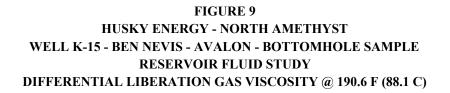


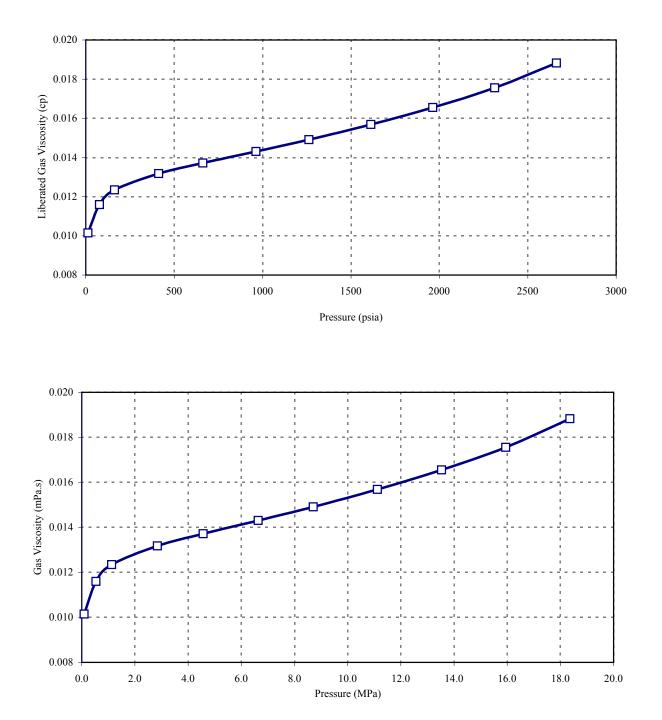


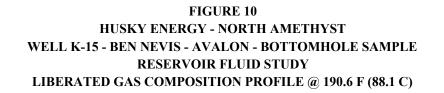


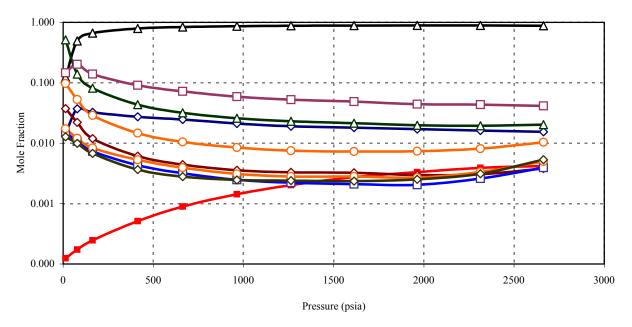


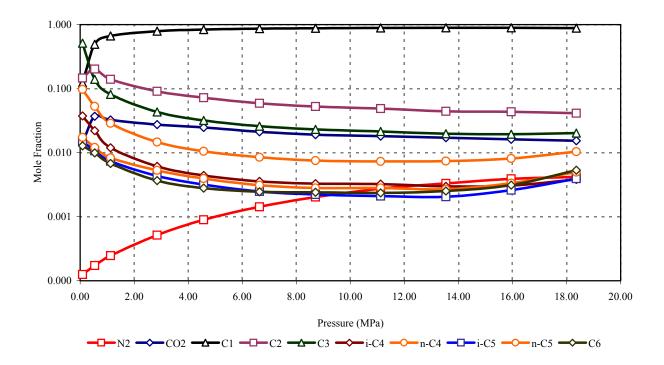







Pressure (MPa)





APPENDIX A

SAMPLE VALIDATION

TABLE A1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point (F)	Component Name	Chemical Symbol	Mole Fraction	Mass Fraction	Calculated Properties	
(F)	Ivaine	Symbol	Fraction	Fraction		
-320.4	Nitrogen	N ₂	0.0017	0.0004	Total Sample	
-109.3	Carbon Dioxide	CO_2	0.0122	0.0047		
-76.6	Hydrogen Sulphide	H_2S	0.0000	0.0000	Molecular Weight	113.92
-259.1	Methane	C ₁	0.4349	0.0613	Density (g/cc)	0.7536
-128.0	Ethane	C_2	0.0408	0.0108		
-44.0	Propane	C ₃	0.0281	0.0109	C ₆₊ Fraction	
10.9	i-Butane	i-C ₄	0.0058	0.0030		
30.9	n-Butane	n-C ₄	0.0168	0.0086	Molecular Weight	229.81
82.0	i-Pentane	i-C ₅	0.0076	0.0048	Mole Fraction	0.4403
97.0	n-Pentane	n-C ₅	0.0117	0.0074	Density (g/cc)	0.8668
97 - 156	Hexanes	C ₆	0.0174	0.0132		
156 - 208.9	Heptanes	C ₇	0.0181	0.0160	C ₇₊ Fraction	
208.9 - 258.1	Octanes	C ₈	0.0235	0.0235		
258.1 - 303.1	Nonanes	C ₉	0.0238	0.0268	Molecular Weight	236.12
303.1 - 345	Decanes	C ₁₀	0.0218	0.0273	Mole Fraction	0.4209
345 - 385	Undecanes	C ₁₁	0.0244	0.0314	Density (g/cc)	0.8704
385 - 419	Dodecanes	C ₁₂	0.0264	0.0374		
419 - 455	Tridecanes	C ₁₃	0.0263	0.0403	C ₁₂₊ Fraction	
455 - 486	Tetradecanes	C ₁₄	0.0213	0.0355		
486 - 519.1	Pentadecanes	C ₁₅	0.0175	0.0317	Molecular Weight	310.14
519.1 - 550	Hexadecanes	C ₁₆	0.0161	0.0314	Mole Fraction	0.2605
550 - 557	Heptadecanes	C ₁₇	0.0137	0.0285	Density (g/cc)	0.8958
557 - 603	Octadecanes	C ₁₈	0.0137	0.0301		
603 - 626	Nonadecanes	C ₁₉	0.0112	0.0258	C ₃₀₊ Fraction	
626 - 651.9	Eicosanes	C ₂₀	0.0089	0.0215	201	
651.9 - 675	Heneicosanes	C ₂₁	0.0079	0.0202	Molecular Weight	592.13
675 - 696.9	Docosanes	C ₂₂	0.0073	0.0196	Mole Fraction	0.0507
696.9 - 716	Tricosanes	C ₂₃	0.0068	0.0190	Density (g/cc)	0.9851
716 - 736	Tetracosanes	C ₂₄	0.0061	0.0178		
736 - 755.1	Pentacosanes	C ₂₅	0.0060	0.0182		
755.1 - 774	Hexacosanes	C ₂₆	0.0054	0.0172	Recombination Parameters	
774.1 - 792	Heptacosanes	C ₂₇	0.0051	0.0168		
792.1 - 809.1	Octacosanes	C ₂₈	0.0051	0.0174	Gas-Oil Ratio (cc/cc)	104.30
809.1 - 826	Nonacosanes	C ₂₉	0.0049	0.0173	Dead Oil Density (g/cc)	0.8430
Above 826	Tricontanes Plus	C ₃₀₊	0.0507	0.2636	Dead Oil MW (g/mol)	220.80
		50.				
	NAPHTHENES					
120.0	Cyclopentane	C_5H_{10}	0.0019	0.0012		
162.0	Methylcyclopentane	$C_{6}H_{12}$	0.0086	0.0063		
178.0	Cyclohexane	$C_{6}H_{12}$	0.0073	0.0054		
214.0	Methylcyclohexane	$C_{7}H_{14}$	0.0103	0.0089		
	AROMATICS					
176.0	Benzene	C_6H_6	0.0063	0.0043		
231.1	Toluene	C_7H_8	0.0082	0.0066		
277 - 282	Ethylbenzene & p,m-Xylene	C ₈ H ₁₀	0.0029	0.0027		
291.9	o-Xylene	C ₈ H ₁₀	0.0019	0.0017		
336.0	1, 2, 4-Trimethylbenzene	C ₉ H ₁₂	0.0034	0.0035		
Total	•		1.0000	1.0000		

Note:

Physical Properties calculated based GPA 2145-00 physical constants

TABLE A2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED OIL

Boiling Point	Component	Chemical	Mole	Mass	Calculated Properties	
(F)	Name	Symbol	Fraction	Fraction		
-320.4	Nitrogon	N	0.0000	0.0000	Total Sample	
-109.3	Nitrogen Carbon Dioxide	N ₂ CO ₂	0.0000	0.0000	Total Sample	
-109.3 -76.6	Hydrogen Sulphide		0.0000	0.0000	Molecular Weight	220.80
-259.1	Methane	H ₂ S	0.0000	0.0000	-	0.8601
-128.0	Ethane	C_1	0.0000	0.0000	Density (g/cc)	0.8001
-128.0		C_2	0.0000	0.0000	C. Exaction	
-44.0 10.9	Propane i-Butane	C ₃ i-C ₄	0.0102	0.0029	C ₆₊ Fraction	
30.9	n-Butane	$n-C_4$	0.0032	0.0019	Malagular Waight	231.91
82.0	i-Pentane	i-C ₄ i-C ₅	0.0190	0.0071	Molecular Weight Mole Fraction	0.9344
97.0	n-Pentane	$n-C_5$	0.0110	0.0033	Density (g/cc)	0.9344
97 - 156	Hexanes		0.0137	0.0091	Density (g/cc)	0.8070
156 - 208.9		C ₆ C ₇	0.0338	0.0180	C. Exection	
	Heptanes				C ₇₊ Fraction	
208.9 - 258.1 258.1 - 303.1	Octanes Nonanes	C ₈	0.0505 0.0512	0.0370 0.0420	Malagular Weight	238.16
		C ₉		0.0420	Molecular Weight	0.8964
303.1 - 345	Decanes	C ₁₀	0.0470		Mole Fraction	
345 - 385	Undecanes	C ₁₁	0.0525	0.0494	Density (g/cc)	0.8710
385 - 419	Dodecanes	C ₁₂	0.0570	0.0587	C. Exaction	
419 - 455	Tridecanes	C ₁₃	0.0565	0.0634	C ₁₂₊ Fraction	
455 - 486	Tetradecanes	C ₁₄	0.0458	0.0557		210.14
486 - 519.1	Pentadecanes	C ₁₅	0.0378	0.0498	Molecular Weight	310.14
519.1 - 550	Hexadecanes	C ₁₆	0.0347	0.0494	Mole Fraction	0.5610
550 - 557	Heptadecanes	C ₁₇	0.0295	0.0448	Density (g/cc)	0.8958
557 - 603	Octadecanes	C ₁₈	0.0294	0.0473		
603 - 626	Nonadecanes	C ₁₉	0.0241	0.0406	C ₃₀₊ Fraction	
626 - 651.9	Eicosanes	C ₂₀	0.0192	0.0338		502.12
651.9 - 675	Heneicosanes	C ₂₁	0.0170	0.0318	Molecular Weight	592.13
675 - 696.9	Docosanes	C ₂₂	0.0157	0.0307	Mole Fraction	0.0507
696.9 - 716	Tricosanes	C ₂₃	0.0147	0.0299	Density (g/cc)	0.9851
716 - 736	Tetracosanes	C ₂₄	0.0132	0.0280		
736 - 755.1	Pentacosanes	C ₂₅	0.0129	0.0285		
755.1 - 774	Hexacosanes	C ₂₆	0.0117	0.0270		
774.1 - 792	Heptacosanes	C ₂₇	0.0110	0.0263		
792.1 - 809.1	Octacosanes	C ₂₈	0.0110	0.0274		
809.1 - 826	Nonacosanes	C ₂₉	0.0106	0.0272		
Above 826	Tricontanes Plus	C ₃₀₊	0.1092	0.2929		
100.0	NAPHTHENES	G 11	0.0040	0.0010		
120.0	Cyclopentane	C_5H_{10}	0.0042	0.0019		
162.0	Methylcyclopentane	C ₆ H ₁₂	0.0111	0.0060		
178.0	Cyclohexane	C_6H_{12}	0.0150	0.0081		
214.0	Methylcyclohexane	C_7H_{14}	0.0220	0.0138		
	AROMATICS					
176.0	Benzene	С.н.	0.0130	0.0065		
		C_6H_6				
231.1	Toluene	C ₇ H ₈	0.0175	0.0103		
277 - 282	Ethylbenzene & p,m-Xylene	C_8H_{10}	0.0063	0.0043		
291.9	o-Xylene	C ₈ H ₁₀	0.0040	0.0027		
336.0	1, 2, 4-Trimethylbenzene	C9H12	0.0072	0.0056		
Total	Physical Properties calculated ba		1.0000	1.2929		

Note:

Physical Properties calculated based GPA 2145-00 physical constants

TABLE A3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED GAS

Component	Chemical	Mole 1	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0033	0.0033		
Carbon Dioxide	CO_2	0.0228	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8120	0.8309		
Ethane	C ₂	0.0761	0.0779		
Propane	C_3	0.0437	0.0448	28.562	160.364
i-Butane	i-C ₄	0.0064	0.0065	4.946	27.769
n-Butane	n-C ₄	0.0149	0.0153	11.182	62.781
i-Pentane	i-C ₅	0.0041	0.0042	3.548	19.918
n-Pentane	n-C ₅	0.0049	0.0050	4.170	23.414
Hexanes	C_6	0.0033	0.0034	3.211	18.027
Heptanes	C ₇	0.0081	0.0083	8.897	49.952
Octanes	C_8	0.0004	0.0004	0.523	2.935
Nonanes	C ₉	0.0000	0.0000	0.056	0.314
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	65.095	365.474
Propanes Plus	C_{3^+}	0.0859	0.0879	65.095	365.474
Butanes Plus	C_{4+}	0.0421	0.0431	36.532	205.110
Pentanes Plus	C ₅₊	0.0208	0.0213	20.404	114.559

Calculated Gas	Properties @ Standa	rd Conditions	Calculated Pseudocritical Properties				
Molecular Weight	21.34 kg/kmol	21.34 lb/lb-mol	Ррс	669.9 psia	4.62 MPa		
Specific Gravity	0.7367 (Air = 1)	0.7367 (Air = 1)	Трс	397.8 R	221.0 K		
MW of C7+	0.83 kg/kmol	0.83 lb/lbmol	Ppc*	663.6 psia	4.58 MPa		
Density of C7+	0.7234 g/cc	723.4 kg/m3	Tpc*	394.0 R	218.9 K		

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net H	leating Value @ Stand	ard Conditions
Dry	1,233.2 Btu/scf	46.03 MJ/m3	Dry	1,118.4 Btu/scf	41.75 MJ/m3
Wet	1,211.7 Btu/scf	45.23 MJ/m3	Wet	1,099.0 Btu/scf	41.02 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

GC No.: 7926

APPENDIX B

DIFFERENTIAL LIBERATION - MATERIAL BALANCE

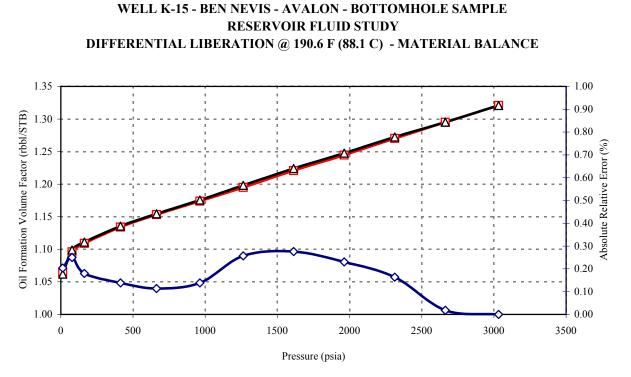


TABLE B1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION @ 190.6 F (88.1 C) - MATERIAL BALANCE

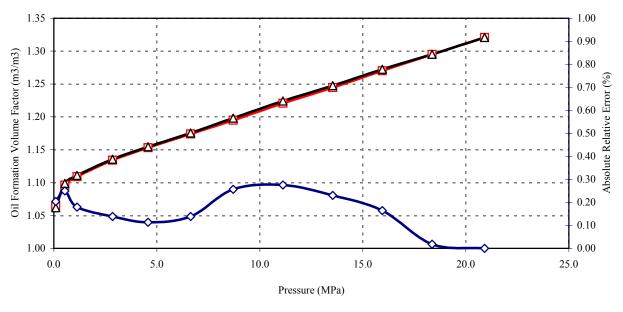

Press	Pressure		Calculated Oil FVF	Absolute Relative Error					
(psia)	(MPa)	[1]	[1]	(%)					
3032 Psat	20.90	1.3208	1.3208	0.0000					
2663	18.36	1.2951	1.2953	0.0184					
2313	15.95	1.2702	1.2723	0.1638					
1963	13.53	1.2447	1.2476	0.2302					
1613	11.12	1.2207	1.2241	0.2757					
1263	8.71	1.1951	1.1981	0.2565					
963	6.64	1.1739	1.1756	0.1384					
663	4.57	1.1532	1.1545	0.1135					
413	2.85	1.1341	1.1357	0.1381					
163	1.12	1.1089	1.1109	0.1796					
78	0.54	1.0962	1.0989	0.2496					
13	0.09	1.0640	1.0618	0.2035					
[1] $\overline{\text{(res bbl/STB)}(n)}$	[1] (res bbl/STB) (res m3/m3)								
Psat - Saturation Pre	ssure								
- Tank condition	s: 60 F (288.7 K)	@ 13 psia (0.09 MI	Pa)						

FIGURE B1 HUSKY ENERGY - NORTH AMETHYST

Experimental — Material Balance — Absolute Relative Error

APPENDIX C

DIFFERENTIAL LIBERATION - LIBERATED GAS ANALYSES

TABLE C1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 2,663 psia (18.36 MPa)

Component	Chemical	Mole I	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0042	0.0042		
Carbon Dioxide	CO ₂	0.0154	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8804	0.8941		
Ethane	C ₂	0.0413	0.0419		
Propane	C ₃	0.0202	0.0205	13.212	74.182
i-Butane	i-C ₄	0.0038	0.0039	2.956	16.599
n-Butane	n-C ₄	0.0104	0.0106	7.781	43.687
i-Pentane	i-C ₅	0.0039	0.0040	3.414	19.167
n-Pentane	n-C ₅	0.0050	0.0051	4.284	24.055
Hexanes	C ₆	0.0053	0.0054	5.210	29.249
Heptanes	C ₇	0.0096	0.0097	10.484	58.865
Octanes	C ₈	0.0005	0.0005	0.549	3.081
Nonanes	C ₉	0.0000	0.0000	0.064	0.361
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	47.955	269.246
Propanes Plus	C ₃₊	0.0588	0.0597	47.955	269.246
Butanes Plus	C ₄₊	0.0385	0.0391	34.743	195.064
Pentanes Plus	C ₅₊	0.0243	0.0247	24.005	134.779

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	19.95 kg/kmol	19.95 lb/lb-mol	Ppc	666.6 psia	4.60 MPa
Specific Gravity	0.6889 (Air = 1)	0.6889 (Air = 1)	Трс	380.5 R	211.4 K
MW of C7+	96.61 kg/kmol	96.61 lb/lbmol	Ppc*	661.9 psia	4.56 MPa
Density of C7+	0.7232 g/cc	723.2 kg/m3	Tpc*	377.9 R	209.9 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net	Heating Value @ Stan	dard Conditions
Dry	1,176.2 Btu/scf	43.90 MJ/m3	Dry	1,065.0 Btu/scf	39.75 MJ/m3
Wet	1,155.7 Btu/scf	43.14 MJ/m3	Wet	1,046.5 Btu/scf	39.06 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 2,313 psia (15.95 MPa)

Chemical **Mole Fraction** Liquid Volume Component Name Symbol As Analyzed Acid Gas Free STB/MMscf mL/m3 0.0039 0.0040 Nitrogen N_2 Carbon Dioxide CO_2 0.0162 0.0000 0.0000 Hydrogen Sulphide H_2S 0.0000 Methane 0.8891 0.9037 C_1 Ethane 0.0434 0.0441 C_2 0.0194 0.0197 12.675 71.163 Propane C_3 0.0031 i-Butane i-C₄ 0.0031 2.373 13.321 0.0083 n-Butane n-C₄ 0.0081 6.080 34.136 0.0026 i-Pentane $i-C_5$ 0.0026 2.255 12.660 0.0034 n-Pentane n-C₅ 0.0033 2.874 16.134 0.0031 0.0032 3.052 Hexanes C_6 17.133 0.0075 Heptanes C₇ 0.0074 8.049 45.192 0.0004 Octanes C_8 0.0004 0.475 2.665 0.0000 Nonanes C_9 0.0000 0.058 0.326 0.0000 0.000 Decanes C₁₀ 0.0000 0.000 Undecane 0.0000 0.000 0.000 C₁₁ 0.0000 0.0000 Dodecanes Plus C_{12^+} 0.0000 0.000 0.000 Total 1.0000 1.0000 37.889 212.730 0.0474 0.0482 37.889 212.730 Propanes Plus C₃₊ Butanes Plus C₄₊ 0.0280 0.0285 25.215 141.567 Pentanes Plus 0.0168 0.0171 16.762 94.110 C54

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	19.35 kg/kmol	19.35 lb/lb-mol	Ррс	669.1 psia	4.61 MPa
Specific Gravity	0.6680 (Air = 1)	0.6680 (Air = 1)	Трс	375.4 R	208.6 K
MW of C7+	96.69 kg/kmol	96.69 lb/lbmol	Ppc*	664.2 psia	4.58 MPa
Density of C7+	0.7234 g/cc	723.4 kg/m3	Tpc*	372.7 R	207.0 K

Calculated Gross Heating Value @ Standard Conditions		Calculated Net	Heating Value @ Stan	dard Conditions	
Dry	1,141.6 Btu/scf	42.61 MJ/m3	Dry	1,032.8 Btu/scf	38.55 MJ/m3
Wet	1,121.8 Btu/scf	41.87 MJ/m3	Wet	1,014.8 Btu/scf	37.88 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 1,963 psia (13.53 MPa)

Component	Chemical	Mole I	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0033	0.0034		
Carbon Dioxide	CO_2	0.0171	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8909	0.9064		
Ethane	C_2	0.0442	0.0450		
Propane	C ₃	0.0198	0.0202	12.934	72.619
i-Butane	i-C ₄	0.0030	0.0030	2.311	12.973
n-Butane	n-C ₄	0.0074	0.0075	5.521	30.995
i-Pentane	i-C ₅	0.0021	0.0021	1.783	10.012
n-Pentane	n-C ₅	0.0027	0.0027	2.311	12.975
Hexanes	C_6	0.0025	0.0026	2.459	13.807
Heptanes	C_7	0.0065	0.0066	7.074	39.716
Octanes	C_8	0.0005	0.0005	0.631	3.542
Nonanes	C ₉	0.0000	0.0000	0.063	0.353
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	35.086	196.992
Propanes Plus	C ₃₊	0.0444	0.0452	35.086	196.992
Butanes Plus	C_{4+}	0.0246	0.0251	22.152	124.373
Pentanes Plus	C ₅₊	0.0143	0.0145	14.321	80.405

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	19.18 kg/kmol	19.18 lb/lb-mol	Ррс	670.2 psia	4.62 MPa
Specific Gravity	0.6624 (Air = 1)	0.6624 (Air = 1)	Трс	374.2 R	207.9 K
MW of C7+	96.98 kg/kmol	96.98 lb/lbmol	Ppc*	665.0 psia	4.59 MPa
Density of C7+	0.7240 g/cc	724.0 kg/m3	Tpc*	371.3 R	206.3 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net	Heating Value @ Stan	dard Conditions
Dry	1,131.5 Btu/scf	42.24 MJ/m3	Dry	1,023.4 Btu/scf	38.20 MJ/m3
Wet	1,111.8 Btu/scf	41.50 MJ/m3	Wet	1,005.6 Btu/scf	37.54 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C4 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 1,613 psia (11.12 MPa)

Component	Chemical	Mole I	Fraction	Liquid Vo	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0027	0.0028		
Carbon Dioxide	CO ₂	0.0181	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8847	0.9010		
Ethane	C_2	0.0488	0.0497		
Propane	C ₃	0.0215	0.0219	14.015	78.686
i-Butane	i-C ₄	0.0032	0.0033	2.510	14.091
n-Butane	n-C ₄	0.0073	0.0074	5.461	30.659
i-Pentane	i-C ₅	0.0021	0.0021	1.823	10.233
n-Pentane	n-C ₅	0.0028	0.0029	2.414	13.555
Hexanes	C ₆	0.0024	0.0024	2.298	12.899
Heptanes	C ₇	0.0057	0.0059	6.294	35.335
Octanes	C ₈	0.0006	0.0006	0.711	3.995
Nonanes	C ₉	0.0001	0.0001	0.085	0.475
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	35.609	199.928
Propanes Plus	C ₃₊	0.0456	0.0465	35.609	199.928
Butanes Plus	C ₄₊	0.0242	0.0246	21.594	121.242
Pentanes Plus	C ₅₊	0.0137	0.0139	13.624	76.492

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	19.27 kg/kmol	19.27 lb/lb-mol	Ррс	671.0 psia	4.63 MPa
Specific Gravity	0.6654 (Air = 1)	0.6654 (Air = 1)	Трс	375.7 R	208.7 K
MW of C7+	97.25 kg/kmol	97.25 lb/lbmol	Ppc*	665.5 psia	4.59 MPa
Density of C7+	0.7245 g/cc	724.5 kg/m3	Tpc*	372.6 R	207.0 K

Calculated Gross Heating Value @ Standard Conditions		Calculated Net	Heating Value @ Stan	dard Conditions	
Dry	1,134.6 Btu/scf	42.35 MJ/m3	Dry	1,026.3 Btu/scf	38.31 MJ/m3
Wet	1,114.8 Btu/scf	41.61 MJ/m3	Wet	1,008.4 Btu/scf	37.64 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 1,263 psia (8.71 MPa)

Component	Chemical	Mole F	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0020	0.0021		
Carbon Dioxide	CO_2	0.0191	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8786	0.8956		
Ethane	C ₂	0.0527	0.0537		
Propane	C ₃	0.0231	0.0236	15.091	84.730
i-Butane	i-C ₄	0.0033	0.0034	2.556	14.353
n-Butane	n-C ₄	0.0075	0.0077	5.618	31.541
i-Pentane	i-C ₅	0.0022	0.0023	1.930	10.835
n-Pentane	n-C ₅	0.0028	0.0029	2.418	13.576
Hexanes	C_6	0.0024	0.0025	2.347	13.175
Heptanes	C ₇	0.0059	0.0060	6.411	35.997
Octanes	C ₈	0.0004	0.0004	0.482	2.706
Nonanes	C ₉	0.0000	0.0000	0.053	0.296
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	36.906	207.209
Propanes Plus	C ₃₊	0.0476	0.0486	36.906	207.209
Butanes Plus	C ₄₊	0.0245	0.0250	21.815	122.479
Pentanes Plus	C ₅₊	0.0137	0.0140	13.641	76.585

Calculated Gas Properties @ Standard Conditions			Calculated Pseudocritical Properties		
Molecular Weight	19.40 kg/kmol	19.40 lb/lb-mol	Ррс	671.5 psia	4.63 MPa
Specific Gravity	0.6699 (Air = 1)	0.6699 (Air = 1)	Трс	377.4 R	209.7 K
MW of C7+	96.85 kg/kmol	96.85 lb/lbmol	Ppc*	665.9 psia	4.59 MPa
Density of C7+	0.7237 g/cc	723.7 kg/m3	Tpc*	374.2 R	207.9 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net	Heating Value @ Stan	dard Conditions
Dry	1,140.3 Btu/scf	42.56 MJ/m3	Dry	1,031.6 Btu/scf	38.51 MJ/m3
Wet	1,120.5 Btu/scf	41.82 MJ/m3	Wet	1,013.7 Btu/scf	37.84 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C6 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 963 psia (6.64 MPa)

Component	Chemical	Mole I	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0014	0.0015		
Carbon Dioxide	CO ₂	0.0212	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8654	0.8841		
Ethane	C ₂	0.0591	0.0603		
Propane	C ₃	0.0259	0.0264	16.906	94.920
i-Butane	i-C ₄	0.0036	0.0036	2.764	15.519
n-Butane	n-C ₄	0.0085	0.0087	6.341	35.600
i-Pentane	i-C ₅	0.0025	0.0025	2.153	12.087
n-Pentane	n-C ₅	0.0031	0.0032	2.663	14.950
Hexanes	C ₆	0.0025	0.0025	2.398	13.463
Heptanes	C ₇	0.0066	0.0067	7.192	40.381
Octanes	C_8	0.0004	0.0004	0.489	2.744
Nonanes	C ₉	0.0000	0.0000	0.051	0.284
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	40.956	229.949
Propanes Plus	C ₃₊	0.0530	0.0541	40.956	229.949
Butanes Plus	C ₄₊	0.0271	0.0277	24.050	135.029
Pentanes Plus	C ₅₊	0.0150	0.0154	14.945	83.910

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	19.76 kg/kmol	19.76 lb/lb-mol	Ррс	672.2 psia	4.63 MPa
Specific Gravity	0.6824 (Air = 1)	0.6824 (Air = 1)	Трс	381.4 R	211.9 K
MW of C7+	96.77 kg/kmol	96.77 lb/lbmol	Ppc*	666.0 psia	4.59 MPa
Density of C7+	0.7235 g/cc	723.5 kg/m3	Tpc*	377.9 R	209.9 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net	Heating Value @ Stan	dard Conditions
Dry	1,155.6 Btu/scf	43.14 MJ/m3	Dry	1,046.0 Btu/scf	39.04 MJ/m3
Wet	1,135.5 Btu/scf	42.39 MJ/m3	Wet	1,027.8 Btu/scf	38.36 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C7 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 663 psia (4.57 MPa)

Component	Chemical	Mole I	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0009	0.0009		
Carbon Dioxide	CO_2	0.0247	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8370	0.8582		
Ethane	C ₂	0.0721	0.0739		
Propane	C ₃	0.0319	0.0327	20.845	117.035
i-Butane	i-C ₄	0.0044	0.0045	3.419	19.199
n-Butane	n-C ₄	0.0105	0.0107	7.835	43.989
i-Pentane	i-C ₅	0.0032	0.0033	2.765	15.526
n-Pentane	n-C ₅	0.0039	0.0040	3.388	19.023
Hexanes	C ₆	0.0028	0.0029	2.729	15.322
Heptanes	C ₇	0.0079	0.0081	8.658	48.610
Octanes	C ₈	0.0007	0.0007	0.792	4.447
Nonanes	C ₉	0.0001	0.0001	0.102	0.570
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	50.534	283.721
Propanes Plus	C ₃₊	0.0654	0.0670	50.534	283.721
Butanes Plus	C_{4+}	0.0334	0.0343	29.689	166.686
Pentanes Plus	C ₅₊	0.0186	0.0190	18.434	103.499

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	20.57 kg/kmol	20.57 lb/lb-mol	Ррс	672.7 psia	4.64 MPa
Specific Gravity	0.7103 (Air = 1)	0.7103 (Air = 1)	Трс	390.0 R	216.7 K
MW of C7+	97.05 kg/kmol	97.05 lb/lbmol	Ppc*	665.9 psia	4.59 MPa
Density of C7+	0.7241 g/cc	724.1 kg/m3	Tpc*	386.0 R	214.4 K

Calculated Gross Heating Value @ Standard Conditions		Calculated Net	Heating Value @ Stan	dard Conditions	
Dry	1,191.4 Btu/scf	44.47 MJ/m3	Dry	1,079.4 Btu/scf	40.29 MJ/m3
Wet	1,170.6 Btu/scf	43.70 MJ/m3	Wet	1,060.6 Btu/scf	39.59 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C8 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 413 psia (2.85 MPa)

Component	Chemical	Mole I	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0005	0.0005		
Carbon Dioxide	CO_2	0.0274	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.7919	0.8142		
Ethane	C ₂	0.0911	0.0936		
Propane	C ₃	0.0434	0.0446	28.316	158.982
i-Butane	i-C ₄	0.0061	0.0063	4.736	26.588
n-Butane	n-C ₄	0.0147	0.0151	10.999	61.756
i-Pentane	i-C ₅	0.0043	0.0044	3.755	21.082
n-Pentane	n-C ₅	0.0053	0.0054	4.546	25.525
Hexanes	C ₆	0.0037	0.0038	3.576	20.075
Heptanes	C ₇	0.0108	0.0111	11.786	66.172
Octanes	C_8	0.0009	0.0009	1.034	5.807
Nonanes	C ₉	0.0001	0.0001	0.153	0.858
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	68.901	386.845
Propanes Plus	C ₃₊	0.0892	0.0917	68.901	386.845
Butanes Plus	C ₄₊	0.0458	0.0471	40.585	227.864
Pentanes Plus	C ₅₊	0.0250	0.0257	24.850	139.520

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	21.93 kg/kmol	21.93 lb/lb-mol	Ррс	671.8 psia	4.63 MPa
Specific Gravity	0.7572 (Air = 1)	0.7572 (Air = 1)	Трс	404.3 R	224.6 K
MW of C7+	97.04 kg/kmol	97.04 lb/lbmol	Ppc*	664.6 psia	4.58 MPa
Density of C7+	0.7241 g/cc	724.1 kg/m3	Tpc*	400.0 R	222.2 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net	Heating Value @ Stan	dard Conditions
Dry	1,258.8 Btu/scf	46.99 MJ/m3	Dry	1,142.4 Btu/scf	42.64 MJ/m3
Wet	1,236.9 Btu/scf	46.17 MJ/m3	Wet	1,122.5 Btu/scf	41.90 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C9 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 163 psia (1.12 MPa)

Component	Chemical	Mole F	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0002	0.0003		
Carbon Dioxide	CO_2	0.0324	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.6659	0.6883		
Ethane	C ₂	0.1398	0.1445		
Propane	C ₃	0.0816	0.0844	53.306	299.285
i-Butane	i-C ₄	0.0119	0.0123	9.237	51.860
n-Butane	n-C ₄	0.0288	0.0298	21.562	121.060
i-Pentane	i-C ₅	0.0073	0.0076	6.381	35.825
n-Pentane	n-C ₅	0.0083	0.0086	7.146	40.123
Hexanes	C_6	0.0068	0.0070	6.619	37.160
Heptanes	C ₇	0.0160	0.0166	17.556	98.569
Octanes	C_8	0.0007	0.0007	0.860	4.831
Nonanes	C ₉	0.0001	0.0001	0.094	0.531
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	122.761	689.244
Propanes Plus	C ₃₊	0.1616	0.1670	122.761	689.244
Butanes Plus	C_{4+}	0.0800	0.0827	69.455	389.958
Pentanes Plus	C ₅₊	0.0392	0.0406	38.657	217.038

Calculated Gas Properties @ Standard Conditions			Calculated Pseudocritical Properties		
Molecular Weight	25.63 kg/kmol	25.63 lb/lb-mol	Ррс	668.2 psia	4.61 MPa
Specific Gravity	0.8847 (Air = 1)	0.8847 (Air = 1)	Трс	444.0 R	246.7 K
MW of C7+	96.57 kg/kmol	96.57 lb/lbmol	Ppc*	660.7 psia	4.56 MPa
Density of C7+	0.7231 g/cc	723.1 kg/m3	Tpc*	439.0 R	243.9 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net Heating Value @ Standard Conditions		
Dry	1,446.0 Btu/scf	53.98 MJ/m3	Dry	1,317.2 Btu/scf	49.17 MJ/m3
Wet	1,420.8 Btu/scf	53.04 MJ/m3	Wet	1,294.3 Btu/scf	48.31 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C10 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 78 psia (0.54 MPa)

Component Chemical		Mole I	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0002	0.0002		
Carbon Dioxide	CO ₂	0.0371	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.4935	0.5125		
Ethane	C ₂	0.2021	0.2098		
Propane	C ₃	0.1398	0.1452	91.317	512.701
i-Butane	i-C ₄	0.0221	0.0230	17.152	96.300
n-Butane	n-C ₄	0.0529	0.0550	39.612	222.400
i-Pentane	i-C ₅	0.0107	0.0111	9.273	52.062
n-Pentane	n-C ₅	0.0121	0.0125	10.360	58.164
Hexanes	C ₆	0.0099	0.0103	9.672	54.305
Heptanes	C ₇	0.0191	0.0198	20.911	117.406
Octanes	C ₈	0.0005	0.0006	0.653	3.668
Nonanes	C ₉	0.0000	0.0000	0.060	0.337
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	199.010	1117.343
Propanes Plus	C ₃₊	0.2672	0.2775	199.010	1117.343
Butanes Plus	C ₄₊	0.1274	0.1323	107.693	604.642
Pentanes Plus	C ₅₊	0.0523	0.0543	50.929	285.941

Calculated Gas Properties @ Standard Conditions			Calcula	ated Pseudocritical Pro	operties
Molecular Weight	30.55 kg/kmol	30.55 lb/lb-mol	Ррс	662.6 psia	4.57 MPa
Specific Gravity	1.0547 (Air = 1)	1.0547 (Air = 1)	Трс	497.9 R	276.6 K
MW of C7+	96.36 kg/kmol	96.36 lb/lbmol	Ppc*	655.2 psia	4.52 MPa
Density of C7+	0.7227 g/cc	722.7 kg/m3	Tpc*	492.3 R	273.5 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net Heating Value @ Standard Conditions		
Dry	1,699.3 Btu/scf	63.43 MJ/m3	Dry	1,553.7 Btu/scf	58.00 MJ/m3
Wet	1,669.7 Btu/scf	62.33 MJ/m3	Wet	1,526.7 Btu/scf	56.99 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C11 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY DIFFERENTIAL LIBERATION GAS COMPOSITION @ 13 psia (0.09 MPa)

Component	Component Chemical Mole Fraction		Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0001	0.0001		
Carbon Dioxide	CO_2	0.0142	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.1225	0.1242		
Ethane	C ₂	0.1467	0.1488		
Propane	C ₃	0.5133	0.5207	335.183	1881.886
i-Butane	i-C ₄	0.0374	0.0380	29.061	163.166
n-Butane	n-C ₄	0.0973	0.0987	72.781	408.632
i-Pentane	i-C ₅	0.0150	0.0152	13.046	73.249
n-Pentane	n-C ₅	0.0173	0.0176	14.903	83.675
Hexanes	C ₆	0.0127	0.0129	12.438	69.834
Heptanes	C ₇	0.0233	0.0237	25.563	143.521
Octanes	C_8	0.0001	0.0001	0.067	0.375
Nonanes	C ₉	0.0001	0.0001	0.067	0.375
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	503.110	2824.713
Propanes Plus	C_{3^+}	0.7165	0.7269	503.110	2824.713
Butanes Plus	C ₄₊	0.2033	0.2062	167.927	942.827
Pentanes Plus	C ₅₊	0.0685	0.0695	66.084	371.030

Calculated Gas Properties @ Standard Conditions			Calcula	ated Pseudocritical Pro	operties
Molecular Weight	43.15 kg/kmol	43.15 lb/lb-mol	Ррс	621.3 psia	4.28 MPa
Specific Gravity	1.4899 (Air = 1)	1.4899 (Air = 1)	Трс	635.8 R	353.2 K
MW of C7+	96.08 kg/kmol	96.08 lb/lbmol	Ppc*	618.8 psia	4.27 MPa
Density of C7+	0.7221 g/cc	722.1 kg/m3	Tpc*	633.3 R	351.8 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net Heating Value @ Standard Conditions		
Dry	2,433.8 Btu/scf	90.85 MJ/m3	Dry	2,238.3 Btu/scf	83.55 MJ/m3
Wet	2,391.4 Btu/scf	89.26 MJ/m3	Wet	2,199.4 Btu/scf	82.10 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

HUSKY ENERGY - NORTH AMETHYST RESERVOIR FLUID STUDY

FINAL REPORT

Prepared for

HUSKY ENERGY

By

Hycal Energy Research Laboratories Ltd. 1338A – 36th Avenue N.E. Calgary, Alberta Canada T2E 6T6 Tel: (403) 250 5800 <u>www.hycal.com</u>

April 25, 2007

Services performed by Hycal for this report are conducted in a manner consistent with recognized engineering standards and principles. Engineering judgement has been applied in developing the conclusions and/or recommendations contained in this report.

RESERVOIR FLUID STUDY

TABLE OF CONTENTS List of Tables List of Figures	i ii iii
RESULTS AND DISCUSSION	1
SUMMARY	2
APPENDIX A Sample Validation	11

LIST OF TABLES

TABLE	1	SAMPLE COLLECTION DATA	3
TABLE	2	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	4
TABLE	3	FLUID COMPRESSIBILITY @ 190.4 F (88.0 C)	5
TABLE	4	CONSTANT COMPOSITION EXPANSION @ 190.4 F (88.0 C)	6
TABLE	5	CONSTANT VOLUME DEPLETION FLUID RECOVERY@ 190.4 F (88.0 C)	7
TABLE	6	CONSTANT VOLUME DEPLETION PRODUCED WELLSTREAM PROPERTIES @ 190.4 F (88.0 C)	8
TABLE	7	CVD - PRODUCED WELLSTREAM COMPOSITIONAL ANALYSIS @ 190.4 F (88.0 C)	9
TABLE	8	CONSTANT VOLUME DEPLETION COMPOSITIONAL YIELDS @ 190.4 F (88.0 C)	10
TABLE	9	CONSTANT VOLUME DEPLETION COMPOSITIONAL RECOVERY @ 190.4 F (88.0 C)	11
TABLE	10	CVD -WELLSTREAM GAS COMPOSITION SUMMARY @ 190.4 F (88.0 C)	12
TABLE	A1	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	24
TABLE	A2	COMPOSITIONAL ANALYSIS OF FLASHED OIL	25
TABLE	A3	COMPOSITIONAL ANALYSIS OF FLASHED GAS	26

LIST OF FIGURES

FIGURE 1	CONSTANT COMPOSITION EXPANSION @ 190.4 F (88.0 C)	12
FIGURE 2	CONSTANT COMPOSITION EXPANSION - LIQUID DROPOUT @ 190.4 F (88.0 C)	13
FIGURE 3	CONSTANT VOLUME DEPLETION - LIQUID DROPOUT @ 190.4 F (88.0 C)	14
FIGURE 4	CONSTANT VOLUME DEPLETION CUMULATIVE PRODUCED FLUID @ 190.4 F (88.	15
FIGURE 5	CONSTANT VOLUME DEPLETION CUMULATIVE PRODUCED FLUID @ 190.4 F (88.	16
FIGURE 6	CONSTANT VOLUME DEPLETION CONDENSATE-GAS RATIO @ 190.4 F (88.0 C)	17
FIGURE 7	CONSTANT VOLUME DEPLETION WELLSTREAM DENSITY @ 190.4 F (88.0 C)	18
FIGURE 8	CONSTANT VOLUME DEPLETION WELLSTREAM VISCOSITY @ 190.4 F (88.0 C)	19
FIGURE 9	CONSTANT VOLUME DEPLETION GAS DEVIATION FACTORS @ 190.4 F (88.0 C)	20
FIGURE 10	CONSTANT VOLUME DEPLETION P/Z PARAMETERS @ 190.4 F (88.0 C)	21
FIGURE 11	CONSTANT VOLUME DEPLETION WELLSTREAM COMPOSITION @ 190.4 F (88.0 C)	22

RESULTS AND DISCUSSION

The reservoir fluid study was conducted on the bottomhole sample BOTTOMHOLE collected from K-15 of NORTH AMETHYST reservoir.

The sample collection data is provided in Table 1 and the sample validation data is given in Appendix A.

The PVT cell was charged with a portion of the fluid sample and a constant composition expansion experiment (CCE) was performed on the fluid. The compositional analysis of reservoir fluid is given in Table 2.

Table 3 provides the CCE results of the average compressibility of the reservoir fluid at pressures above the saturation pressure. Table 4 contains the complete CCE results with the exception of the data already presented in Table 3. Figure 1 is the relative total volume (V/Vsat) data and Y-function. Figure 2 shows the liquid drop out during constant composition expansion experiment.

Table 5 contains fluid recovery data from the constant volume depletion including liquid drop out, cumulative produced fluid, cumulative liquid recovery and separator condensate-gas ratios, which are shown in Figures 3 through 6, respectively.

Table 6 contains a summary of the properties of the constant volume depletion wellstream produced including densities, viscosities, deviation factors, two-phase deviation factors, P/Z parameters. The gas deviation factor (Z) and two-phase deviation factor, density, viscosity and the P/Z parameters are shown in Figures 7 through 10, respectively.

Table 7 summarizes the wellstream produced compositions from each pressure stage during the constant volume depletion experiment. Figure 11 shows this data plotted on semi-log co-ordinates. Table 8 and 9 present the compositional analysis of the yields and cumulative compositional recovery, respectively.

SUMMARY

HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MAIN PVT RESULTS

INITIAL RESERVOIR CONDITIONS						
Reservoir Pressure	3450 psia	23.79 MPa				
Reservoir Temperature:	190.4 F	88 C				
CONSTANT COMPOSITION EXPANS	ION @ 190.4 F (88.0 C)					
Saturation Pressure	3186 psia	21.97 MPa				
Compressibility @ Reservoir Pressure	0.00022154 psia ⁻¹	3.21318E-02 MPa ⁻¹				
Compressibility @ Saturation Pressure	2.54187E-04 psia ⁻¹	3.68668E-02 MPa ⁻¹				
Maximum Liquid Drop (% of Vtot)	Maximum Liquid Drop (% of Vtot) 0.32 @ 1,442 psia (9.94 MPa)					
CONSTANT VOLUME DEPLETION @) 190.4 F (88.0 C)					
At Saturation Pressure						
Fluid Density	0.1641 g/cm^3	164.1 kg/m^3				
Fluid Viscosity	0.0201 cp	0.0201 mPa.s				
Maximum Liquid Drop (% of Vsat)	0.42 @ 1,013 psia (6.98 MPa)				
SINGLE-STAGE SEPARATOR TEST						
At Saturation Pressure						
Fluid Formation Volume Factor	53.0663 res.bbl/STB	$53.0663 \text{ res.m}^3/\text{m}^3$				
Solution Gas-Oil Ratio	54745.34 scf/STB	$9750.19 \text{ m}^3/\text{m}^3$				
At Tank Conditions						
Flashed Oil Density	0.7700 g/cm^3	770.0 kg/m ³				
API Gravity	52.27	52.27				

TABLE 1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY SAMPLE COLLECTION DATA

Project File:	2006-147
Operator Name:	HUSKY ENERGY
Pool or Zone:	BEN NEVIS - AVALON
Field or Area:	NORTH AMETHYST
Well Location:	K-15
Fluid Sample:	BOTTOMHOLE
Sampling Company:	Schlumberger
Name of Sampler:	N/A
Sampling Date:	2-Nov-06
Sampling Point:	SUBSURFACE
Sampling Temperature:	190.6 F 88.1 C
Sampling Pressure:	3450.0 psia 23.79 MPa
Reservoir Temperature: Reservoir Pressure: Initial Reservoir Pressure (Pi) Depth of Reported Pi	190.4 F88.0 C3450.0 psia23.79 MPa3450.0 psia23.79 MPa2375.0 mMDN/A mss

TABLE 2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point (K)			Mole Fraction	Mass Fraction	Calculated Prop	oerties
()						
77.4	Nitrogen	N2	0.0052	0.0070	Total Sample	
194.6	Carbon Dioxide	CO2	0.0161	0.0344	- · · ··· · ···· · ···· · ···	
212.8	Hydrogen Sulphide	H2S	0.0000	0.0000	Molecular Weight	20.6
111.5	Methane	C1	0.8813	0.6853		
184.3	Ethane	C2	0.0398	0.0580		
231.0	Propane	C3	0.0198	0.0424	C6+ Fraction	
261.5	i-Butane	i-C4	0.0031	0.0089	00, 1, 100,00	
272.6	n-Butane	n-C4	0.0077	0.0216	Molecular Weight	117.8
301.0	i-Pentane	i-C5	0.0022	0.0076	Mole Fraction	0.021
309.3	n-Pentane	n-C5	0.0022	0.0103	Density (g/cc)	0.775
309.3 - 342	Hexanes	C6	0.0033	0.0137	Density (gree)	0.770
342 - 371.4	Heptanes	C7	0.0019	0.0093		
371.4 - 398.8	Octanes	C8	0.0015	0.0082	C7+ Fraction	
398.8 - 423.8	Nonanes	C9	0.0013	0.0082	Critraction	
423.8 - 447	Decanes	C10	0.0013	0.0074	Molecular Weight	104.1
447 - 469.3	Undecanes	C11	0.0008	0.0059	Mole Fraction	0.018
469.3 - 488.2	Dodecanes	C12	0.0009	0.0069	Density (g/cc)	0.788
488.2 - 508.2	Tridecanes	C12 C13	0.0009	0.0069	Density (g/ec)	0.700
488.2 - 508.2 508.2 - 525.4	Tetradecanes	C13 C14	0.0008	0.0009		
525.4 - 543.8	Pentadecanes	C14 C15	0.0005	0.0034	C12+ Fraction	
543.8 - 560.9	Hexadecanes	C16	0.0003	0.0043	C12+ Fraction	
560.9 - 564.8	Heptadecanes	C10 C17	0.0004	0.0041	Molecular Weight	203.
564.8 - 590.4	Octadecanes	C17 C18	0.0002	0.0027	Mole Fraction	0.00
590.4 - 603.2	Nonadecanes	C18 C19	0.0002	0.0024		0.00
		C19 C20		0.0012	Density (g/cc)	0.85
603.2 - 617.5	Eicosanes	C20 C21	0.0000			
617.5 - 630.4	Heneicosanes	C21 C22	0.0000	0.0003		
630.4 - 642.5	Docosanes	C22 C23	0.0000	0.0002 0.0002		
642.5 - 653.2	Tricosanes	C23 C24	0.0000			
653.2 - 664.3	Tetracosanes		0.0000	0.0002		
664.3 - 674.9	Pentacosanes	C25	0.0000	0.0002		
674.9 - 685.4	Hexacosanes	C26	0.0000	0.0002		
685.4 - 695.4	Heptacosanes	C27	0.0000	0.0002		
695.4 - 704.9	Octacosanes	C28	0.0000	0.0002		
704.9 - 714.3	Nonacosanes	C29	0.0000	0.0002		
Above 714.3	Tricontanes Plus	C30+	0.0001	0.0019		
322.0	Cyclopentane	C5H10	0.0001	0.0002		
345.4	Methylcyclopentane	C6H12	0.0049	0.0199		
354.3	Cyclohexane	C6H12	0.0008	0.0032		
374.3	Methylcyclohexane	C7H14	0.0008	0.0039		
252.2	Danzana	CALL	0.0005	0.0020		
353.2	Benzene	C6H6	0.0005	0.0020		
383.8	Toluene	C7H8	0.0006	0.0027		
409.3 - 412	Ethylbenzene & p,m-Xylene	C8H10	0.0002	0.0008		
417.5	o-Xylene	C8H10	0.0001	0.0005		
442.0 Total	1, 2, 4-Trimethylbenzene	C9H12	0.0001	0.0005		

TABLE 3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY FLUID COMPRESSIBILITY @ 190.4 F (88.0 C)

Pressur	Pressure Range						
From (psia)	To (psia)	Compressibility (psi ⁻¹)					
5013	4763	1.3405E-04					
4763	4513	1.4593E-04					
4513	4263	1.5953E-04					
4263	4013	1.7630E-04					
4013	3763	1.9559E-04					
3763	3513	2.2154E-04					
3513	3186 Psat	2.5419E-04					

Pressure	Pressure Range					
From (MPa)	To (MPa)	Compressibility (MPa ⁻¹)				
34.56	32.84	1.9443E-02				
32.84	31.11	2.1166E-02				
31.11	29.39	2.3138E-02				
29.39	27.67	2.5571E-02				
27.67	25.94	2.8368E-02				
25.94	24.22	3.2132E-02				
24.22	21.97 Psat	3.6867E-02				

Psat - Saturation Pressure

TABLE 4 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT COMPOSITION EXPANSION @ 190.4 F (88.0 C)

Pre	ssure	RelativeVolume	Z-Factor	Y-Function	Liquid Volume	Fluid Dens
(psia)	(MPa)	[1]	(-)	[2]	(% of Vtot)	(g/cc)
5013	34.56	0.70404	1.00192			0.2331
4763	32.84	0.72845	0.98496			0.2253
4513	31.11	0.75604	0.96860			0.2171
4263	29.39	0.78744	0.95294			0.2084
4013	27.67	0.82375	0.93842			0.1992
3763	25.94	0.86610	0.92519			0.1895
3513	24.22	0.91688	0.91436			0.1790
3186 Psat	21.97	1.00000	0.90442		0.0000	0.1641
2978	20.53	1.06238	0.89810	1.1198	0.0364	
2768	19.08	1.13741	0.89373	1.0991	0.0772	
2676	18.45	1.17487	0.89247	1.0900	0.0968	
2439	16.81	1.28720	0.89119	1.0665	0.1403	
2187	15.08	1.43859	0.89309	1.0416	0.1904	
2083	14.36	1.51349	0.89491	1.0313	0.2101	
1903	13.12	1.66527	0.89956	1.0135	0.2465	
1752	12.08	1.81974	0.90499	0.9986	0.2785	
1686	11.62	1.89690	0.90782	0.9921	0.2869	
1442	9.94	2.24965	0.92081	0.9680	0.3202	
1365	9.41	2.38937	0.92576	0.9604	0.3191	
1109	7.64	3.00337	0.94538	0.9350	0.2969	
736	5.07	4.70735	0.98327	0.8982	0.2153	
619	4.27	5.67913	0.99763	0.8866	0.1748	
524	3.61	6.79376	1.01020	0.8772	0.1463	

[2] Y Function = ((Psat-P)/P)/(Relative Volume - 1)

Psat - Saturation Pressure

TABLE 5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT VOLUME DEPLETION FLUID RECOVERY@ 190.4 F (88.0 C)

Press	Pressure		LiquidCumulativeDrop OutProduced Fluid		lative Recovery	Separator Condensate - Gas Ratio		
(psia)	(MPa)	(% of Vsat)				(STB/MMscf)	$(m^{2}/10^{\circ}m^{2})$	
5013	34.56			0.00	0.00	18.27	102.56	
4763	32.84			0.00	0.00	18.27	102.56	
4513	31.11			0.00	0.00	18.27	102.56	
4263	29.39			0.00	0.00	18.27	102.56	
4013	27.67			0.00	0.00	18.27	102.56	
3763	25.94			0.00	0.00	18.27	102.56	
3513	24.22			0.00	0.00	18.27	102.56	
3186 Psat	21.97	0.0000	0.0000	0.00	0.00	18.27	102.56	
2813	19.39	0.0653	8.9138	0.25	1.43	2.86	16.06	
2513	17.32	0.1262	17.4089	0.46	2.57	2.40	13.47	
2213	15.26	0.1902	27.2544	0.64	3.57	1.81	10.17	
1913	13.19	0.2722	37.2194	0.80	4.48	1.64	9.18	
1613	11.12	0.3492	47.5795	0.95	5.34	1.47	8.28	
1313	9.05	0.4027	57.9676	1.08	6.07	1.25	7.02	
1013	6.98	0.4196	68.0272	1.19	6.68	1.09	6.11	
813	5.60	0.4181	74.5799	1.25	7.04	0.97	5.45	
613	4.22	0.4009	80.9375	1.30	7.32	0.80	4.49	
413	2.85	0.3752	87.1343	1.34	7.54	0.62	3.46	
	bic meters) of oil and		nperature per barrel (c indicated pressure and				88.7 K).	

- Tank conditions: 60 F (288.7 K) @ 13 psia (0.0896 MPa); Standard conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa).

TABLE 6 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT VOLUME DEPLETION PRODUCED WELLSTREAM PROPERTIES @ 190.4 F (88.0 C)

Press	sure	Gas Density	Gas Viscosity	Gas Deviation Factor	Two-Phase Gas Deviation	P/Z		P/Z _{2ph}		
(psia)	(MPa)	(g/cm [°])	(cp=mPa.s)	(-)	Factor (Z _{2ph})	(psia)	(MPa)	(psia)	(MPa)	
5013	34.56									
4763	32.84									
4513	31.11									
4263	29.39									
4013	27.67									
3763	25.94									
3513	24.22									
3186 Psat	21.97	0.1641	0.0201	0.9044	0.9044	3522	24.29	3522	24.29	
2813	19.39	0.1438	0.0192	0.8814	0.8769	3191	22.00	3208	22.12	
2513	17.33	0.1334	0.0184	0.8698	0.8642	2889	19.92	2907	20.05	
2213	15.26	0.1178	0.0174	0.8686	0.8645	2548	17.56	2560	17.65	
1913	13.19	0.1015	0.0165	0.8723	0.8664	2193	15.12	2208	15.22	
1613	11.12	0.0846	0.0157	0.8815	0.8757	1830	12.61	1842	12.70	
1313	9.05	0.0680	0.0150	0.8950	0.8902	1467	10.11	1475	10.17	
1013	6.98	0.0514	0.0144	0.9135	0.9048	1109	7.64	1119	7.72	
813	5.61	0.0407	0.0140	0.9278	0.9154	876	6.04	888	6.12	
613	4.23	0.0300	0.0137	0.9442	0.9238	649	4.47	663	4.57	
413	2.85	0.0193	0.0135	0.9631	0.9289	429	2.96	444	3.06	
			<u> </u>							
- Saturation pres	ssure									
sat - Saturation pres - Standard cond	ssure litions: 60 F (288.7	′ K) @ 14.696 psia	a (0.101325 MPa)							

TABLE 7

HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

CVD - PRODUCED WELLSTREAM COMPOSITIONAL ANALYSIS @ 190.4 F (88.0 C)

Component	Chemical		Constan	t Volume De	pletion Stage	e Pressure (p	sia/MPa)	
Name	Symbol	2813	2513	2213	1913	1613	1313	1013
		19.39	17.33	15.26	13.19	11.12	9.05	6.98
Nitrogen	N2	0.0033	0.0042	0.0043	0.0041	0.0041	0.0040	0.0039
Carbon Dioxide	CO2	0.0191	0.0164	0.0167	0.0169	0.0170	0.0173	0.0174
Hydrogen Sulphide	H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Methane	C1	0.8844	0.8782	0.8777	0.8775	0.8777	0.8763	0.8763
Ethane	C2	0.0421	0.0426	0.0427	0.0430	0.0430	0.0436	0.0437
Propane	C3	0.0201	0.0197	0.0200	0.0200	0.0199	0.0201	0.0200
i-Butane	i-C4	0.0032	0.0033	0.0032	0.0032	0.0032	0.0033	0.0033
n-Butane	n-C4	0.0080	0.0082	0.0080	0.0080	0.0080	0.0081	0.0081
i-Pentane	i-C5	0.0031	0.0040	0.0037	0.0034	0.0034	0.0033	0.0034
n-Pentane	n-C5	0.0040	0.0054	0.0050	0.0047	0.0045	0.0045	0.0045
Hexanes	C6	0.0035	0.0049	0.0049	0.0048	0.0047	0.0046	0.0046
Heptanes	C7	0.0087	0.0123	0.0131	0.0133	0.0136	0.0139	0.0139
Octanes	C8	0.0004	0.0007	0.0007	0.0010	0.0007	0.0006	0.0006
Nonanes	C9	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Decanes	C10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Undecanes	C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Dodecanes	C12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tridecanes	C13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tetradecanes	C14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Pentadecanes	C15	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hexadecanes	C16	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Heptadecanes Octadecanes	C17 C18	0.0000	$0.0000 \\ 0.0000$	$0.0000 \\ 0.0000$	0.0000	0.0000	$0.0000 \\ 0.0000$	0.0000
		0.0000 0.0000	0.0000	0.0000	0.0000	$0.0000 \\ 0.0000$	0.0000	0.0000 0.0000
Nonadecanes Eicosanes	C19 C20	0.0000	0.0000	0.0000	$0.0000 \\ 0.0000$	0.0000	0.0000	0.0000
Heneicosanes	C20 C21	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Docosanes	C22	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tricosanes	C22 C23	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tetracosanes	C24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Pentacosanes	C25	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hexacosanes	C26	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Heptacosanes	C27	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Octacosanes	C28	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Nonacosanes	C29	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Tricontanes Plus	C30+	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NAPHTHENES								
Cyclopentane	C5H10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Methylcyclopentane	C6H12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Cyclohexane	C6H12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Methylcyclohexane	C7H14	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
AROMATICS								
Benzene	C6H6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Toluene	C7H8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Ethylbenzene & p,m-Xylene	C8H10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
o-Xylene	C8H10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1, 2, 4-Trimethylbenzene	C9H12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	Question	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Calculated Properties of C12+ I Molecular Weight	raction	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Mole Fraction		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Density (g/cc)		0.0000 n/a	0.0000 n/a	0.0000 n/a	0.0000 n/a	0.0000 n/a	0.0000 n/a	0.0000 n/a
Density (g/cc)		11/ a	11/ a	11/ a	11/a	11/a	11/ a	11/a

TABLE 7 (Cont'd) HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

CONSTANT VOLUME DEPLETION WELLSTREAM COMPOSITIONS @ 190.4 F (88.0 C)

Component	Chemical		onstant Volu	me Depletion	Stage Pres	ssure (psia/M	(Pa)
Name	Symbol	813	613	413			
		5.61	4.23	2.85			
Nitrogen	N2	0.0039	0.0036	0.0021			
Carbon Dioxide	CO2	0.0039	0.0030	0.0021			
Hydrogen Sulphide	H2S	0.0177	0.0174	0.0103			
Methane	C1	0.0000		0.0000			
	C1 C2		0.8770				
Ethane	C2 C3	0.0444 0.0203	0.0438	0.0421 0.0198			
Propane	i-C4	0.0203	0.0203	0.0198			
i-Butane n-Butane		0.0033	0.0033				
	n-C4 i-C5	0.0085	0.0082 0.0033	0.0080 0.0022			
i-Pentane n-Pentane	n-C5	0.0033	0.0033	0.0022			
Hexanes	C6	0.0047	0.0048	0.0030			
Heptanes	C0 C7	0.0043	0.0044	0.0032			
Octanes	C8	0.0007	0.0008	0.0009			
Nonanes	C8 C9	0.0007	0.0008	0.0009			
Decanes	C10	0.0001	0.0002	0.0002			
Undecanes	C10 C11	0.0000	0.0000	0.0000			
Dodecanes	C12	0.0000	0.0000	0.0000			
Tridecanes	C12 C13	0.0000	0.0000	0.0000			
Tetradecanes	C13 C14	0.0000	0.0000	0.0000			
Pentadecanes	C14 C15	0.0000	0.0000	0.0000			
Hexadecanes	C15 C16	0.0000	0.0000	0.0000			
Heptadecanes	C10 C17	0.0000	0.0000	0.0000			
Octadecanes	C18	0.0000	0.0000	0.0000			
Nonadecanes	C18 C19	0.0000	0.0000	0.0000			
Eicosanes	C20	0.0000	0.0000	0.0000			
Heneicosanes	C20 C21	0.0000	0.0000	0.0000			
Docosanes	C21 C22	0.0000	0.0000	0.0000			
Tricosanes	C22 C23	0.0000	0.0000	0.0000			
Tetracosanes	C23 C24	0.0000	0.0000	0.0000			
Pentacosanes	C24 C25	0.0000	0.0000	0.0000			
Hexacosanes	C25 C26	0.0000	0.0000	0.0000			
Heptacosanes	C20 C27	0.0000	0.0000	0.0000			
Octacosanes	C28	0.0000	0.0000	0.0000			
Nonacosanes	C28 C29	0.0000	0.0000	0.0000			
Tricontanes Plus	C30+	0.0000	0.0000	0.0000			
Theomatics Trus	0.301	0.0000	0.0000	0.0000			
NAPHTHENES							
Cyclopentane	C5H10	0.0000	0.0000	0.0000		1	
Methylcyclopentane	C6H12	0.0000	0.0000	0.0000			
Cyclohexane	C6H12	0.0000	0.0000	0.0000		1	
Methylcyclohexane	C7H14	0.0000	0.0000	0.0000			
AROMATICS	a crist	0.0000	0.0000	0.0000			
Benzene	C6H6	0.0000	0.0000	0.0000			
Toluene	C7H8	0.0000	0.0000	0.0000		1	
Ethylbenzene & p,m-Xylene	C8H10	0.0000	0.0000	0.0000			
o-Xylene	C8H10	0.0000	0.0000	0.0000		1	
1, 2, 4-Trimethylbenzene Total	C9H12	0.0000 1.0000	0.0000	0.0000 1.0000			
Calculated Properties of C12+ F	Traction	1.0000	1.0000	1.0000			1
Molecular Weight	action	n/a	n/a	n/a		1	1
Mole Fraction		0.0000	0.0000	0.0000			
Density (g/cc)		n/a	n/a	n/a		1	
Density (g/cc)		11/ a	11/ a	11/ a			

TABLE 8 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT VOLUME DEPLETION COMPOSITIONAL YIELDS @ 190.4 F (88.0 C)

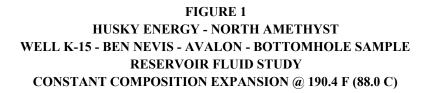
Press	1180			iquid Yield				
11055	uic	C	3+	C	4+	C	5+	
(psia)	(MPa)	(STB/MMscf)	(m [°] /10°m [°])	(STB/MMscf)	(m [°] /10°m [°])	(STB/MMscf)	(m³/10°m³)	
5012	24.56	co 77	295.06	27.64	011 00	20.20	165.02	
5013	34.56	50.77	285.06	37.64	211.33	29.39	165.03	
4763	32.84	50.77	285.06	37.64	211.33	29.39	165.03	
4513	31.11	50.77	285.06	37.64	211.33	29.39	165.03	
4263	29.39	50.77	285.06	37.64	211.33	29.39	165.03	
4013	27.67	50.77	285.06	37.64	211.33	29.39	165.03	
3763	25.94	50.77	285.06	37.64	211.33	29.39	165.03	
3513	24.22	50.77	285.06	37.64	211.33	29.39	165.03	
3186 Psat	21.97	50.77	285.06	37.64	211.33	29.39	165.03	
2813	19.39	40.92	229.74	27.59	154.91	19.00	106.68	
2513	17.32	48.37	271.58	35.30	198.22	26.50	148.80	
2213	15.26	48.52	272.44	35.31	198.23	26.77	150.33	
1913	13.19	48.51	272.39	35.30	198.19	26.73	150.10	
1613	11.12	48.21	270.68	35.07	196.91	26.48	148.68	
1313	9.05	48.65	273.15	35.37	198.57	26.63	149.53	
1013	6.98	48.64	273.10	35.37	198.61	26.67	149.74	
813	5.60	48.92	274.65	35.50	199.34	26.64	149.58	
613	4.22	48.09	270.04	34.67	194.68	25.87	145.28	
413	2.85	40.99	230.17	27.90	156.65	19.31	108.40	
I		1 1		I		I I		
Barrels (Cubic m	neters) of oil at india	cated pressure and tem	nerature per harrel (cubic meter) of residu	al oil @ 60 F (288 7	K)		
		id liberated gas at the i					887K)	
it - Saturation Press		ia no oracoa gao at the r	nareated pressure un	a temperature per ban				

- Tank conditions: 60 F (288.7 K) @ 13 psia (0.0896 MPa); Standard conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa).

TABLE 9 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT VOLUME DEPLETION COMPOSITIONAL RECOVERY @ 190.4 F (88.0 C)

Pressuit 5013 4763 4513 4263 4013 3763 3513	(MPa) 34.56 32.84 31.11 29.39 27.67	C: (STB/MMscf) 0.00 0.00 0.00 0.00 0.00	³⁺ (m ³ /10°m ³) 0.00 0.00 0.00	C ₄ (STB/MMscf) 0.00 0.00 0.00	(m³/10°m³) 0.00 0.00	C ₅ (STB/MMscf) 0.00 0.00	+ (m ³ /10°m ³) 0.00 0.00
4763 4513 4263 4013 3763	34.56 32.84 31.11 29.39 27.67	0.00 0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00	0.00
4763 4513 4263 4013 3763	32.84 31.11 29.39 27.67	0.00 0.00	0.00	0.00	0.00		
4763 4513 4263 4013 3763	32.84 31.11 29.39 27.67	0.00 0.00	0.00	0.00			
4513 4263 4013 3763	31.11 29.39 27.67	0.00					
4263 4013 3763	29.39 27.67			0.00	0.00	0.00	0.00
3763	27.67		0.00	0.00	0.00	0.00	0.00
3763		0.00	0.00	0.00	0.00	0.00	0.00
	25.94	0.00	0.00	0.00	0.00	0.00	0.00
3313	24.22	0.00	0.00	0.00	0.00	0.00	0.00
3186 Psat	21.97	0.00	0.0000	0.00	0.0000	0.00	0.0000
2813	19.39	3.65	20.48	2.46	13.81	1.69	9.51
2513	17.32	7.76	43.55	5.46	30.65	3.94	22.15
2213	15.26	12.53	70.37	8.93	50.16	6.58	36.95
1913	13.19	17.37	97.52	12.45	69.91	9.24	51.91
1613	11.12	22.36	125.56	16.08	90.31	11.99	67.31
1313	9.05	27.42	153.93	19.76	110.94	14.75	82.85
1013	6.98	32.31	181.41	23.32	130.92	17.44	97.91
813	5.60	35.51	199.40	25.64	143.98	19.18	107.71
613	4.22	38.57	216.57	27.85	156.36	20.83	116.95
413	2.85	41.11	230.83	29.58	166.07	22.02	123.66

Psat - Saturation Pressure


- Tank conditions: 60 F (288.7 K) @ 13 psia (0.0896 MPa); Standard conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa).

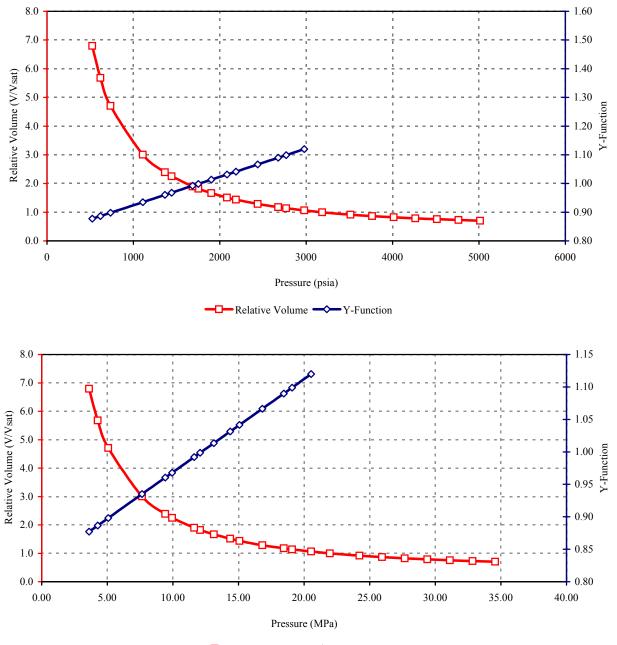
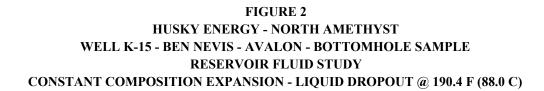
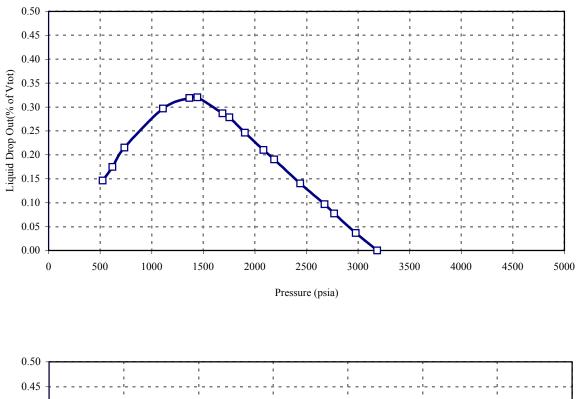
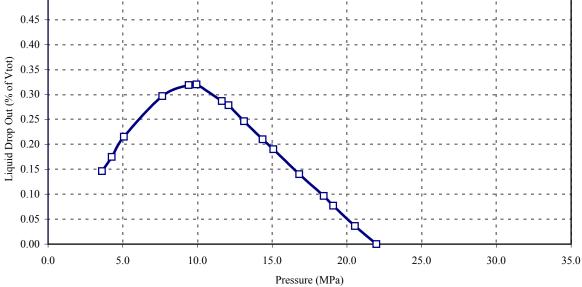


TABLE 10 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CVD -WELLSTREAM GAS COMPOSITION SUMMARY @ 190.4 F (88.0 C)

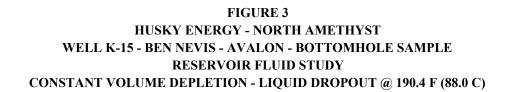
				Constant	Volume Stag	ge Pressure (psia/MPa)			
Component	2813	2513	2213	1913	1613	1313	1013	813	613	413
	19.39	17.33	15.26	13.19	11.12	9.05	6.98	5.61	4.23	2.85
N2	0.0033	0.0042	0.0043	0.0041	0.0041	0.0040	0.0039	0.0039	0.0036	0.0021
CO2	0.0191	0.0164	0.0167	0.0169	0.0170	0.0173	0.0174	0.0177	0.0174	0.0163
H2S	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C1	0.8844	0.8782	0.8777	0.8775	0.8777	0.8763	0.8763	0.8749	0.8770	0.8890
C2	0.0421	0.0426	0.0427	0.0430	0.0430	0.0436	0.0437	0.0444	0.0438	0.0421
C3	0.0201	0.0197	0.0200	0.0200	0.0199	0.0201	0.0200	0.0203	0.0203	0.0198
i-C4	0.0032	0.0033	0.0032	0.0032	0.0032	0.0033	0.0033	0.0033	0.0033	0.0032
n-C4	0.0080	0.0082	0.0080	0.0080	0.0080	0.0081	0.0081	0.0083	0.0082	0.0080
i-C5	0.0031	0.0040	0.0037	0.0034	0.0034	0.0033	0.0034	0.0035	0.0033	0.0022
n-C5	0.0040	0.0054	0.0050	0.0047	0.0045	0.0045	0.0045	0.0047	0.0048	0.0030
C6	0.0035	0.0049	0.0049	0.0048	0.0047	0.0046	0.0046	0.0045	0.0044	0.0032
C7	0.0087	0.0123	0.0131	0.0133	0.0136	0.0139	0.0139	0.0137	0.0130	0.0101
C8	0.0004	0.0007	0.0007	0.0010	0.0007	0.0006	0.0006	0.0007	0.0008	0.0009
С9	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002
C10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C12+	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Calculated Properties of T	Fotal Sample	@ Standard	l Conditions							
MW (g/mol)	19.62	20.11	20.14	20.16	20.14	20.18	20.18	20.21	20.13	19.56
Gravity (Air=1.0)	0.6774	0.6943	0.6954	0.6959	0.6953	0.6968	0.6969	0.6978	0.6950	0.6754
Calculated Properties of C	2 7+ @ Stand	ard Condition	ons			1				
MW (g/mol)	96.55	96.74	96.72	96.95	96.75	96.69	96.71	96.75	96.91	97.29
Density (g/cc)	0.7231	0.7235	0.7235	0.7239	0.7235	0.7233	0.7234	0.7235	0.7238	0.7245

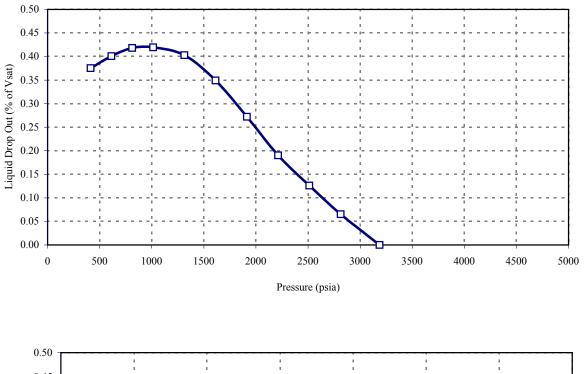


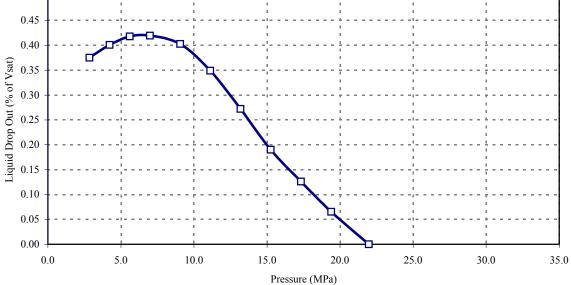


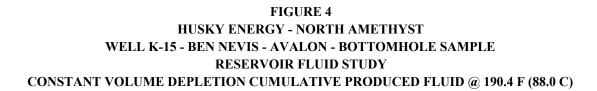


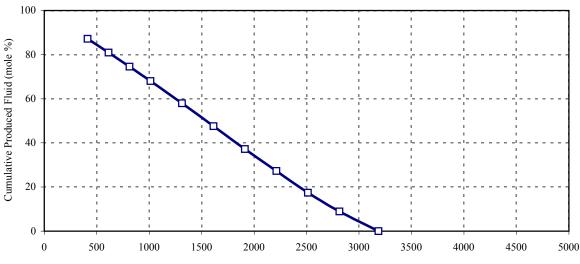
- Relative Volume - Y-Function

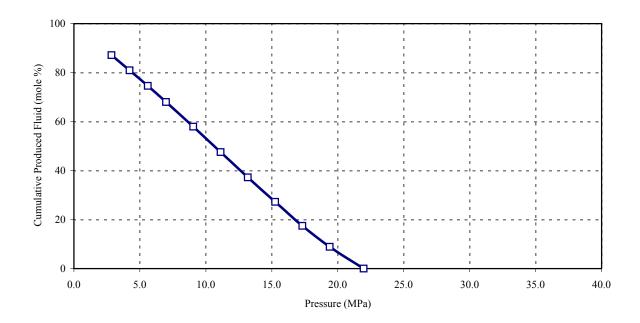


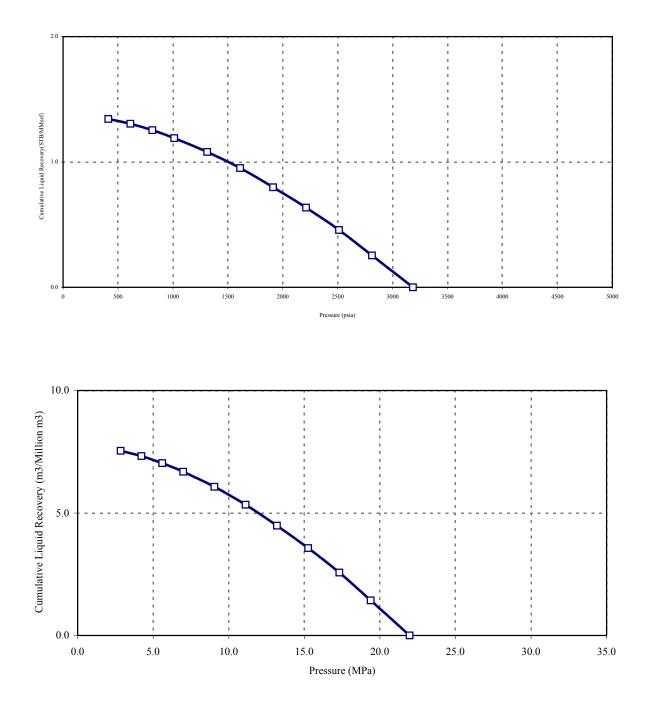












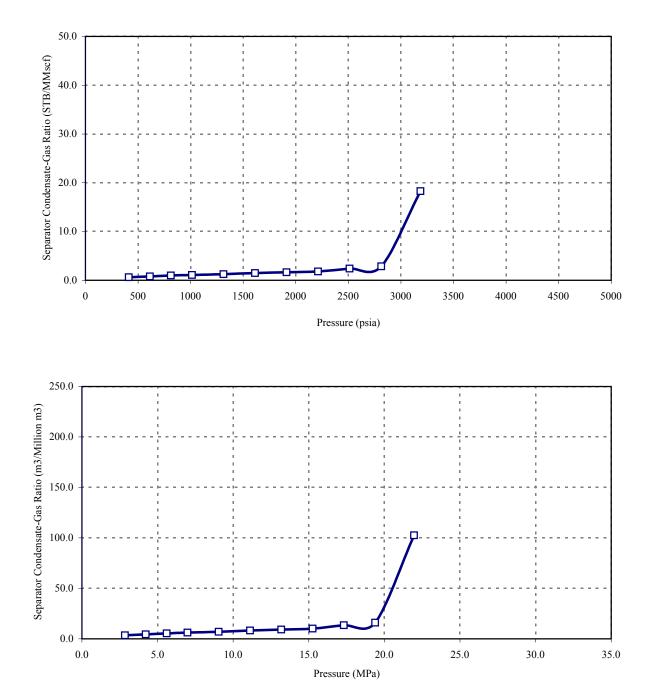
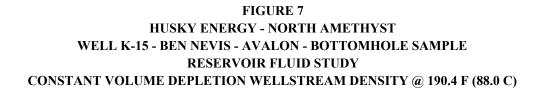
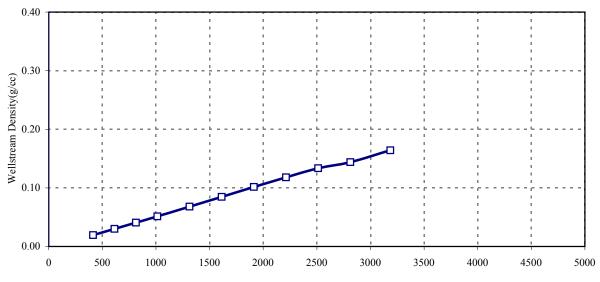
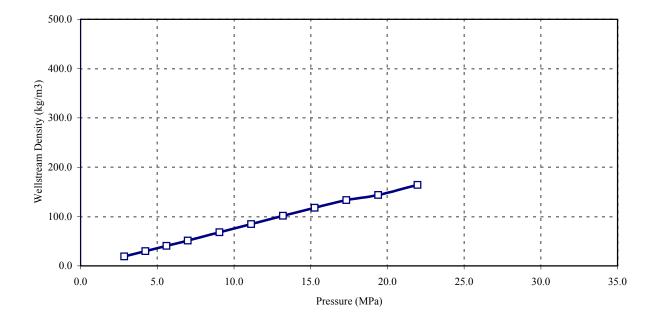
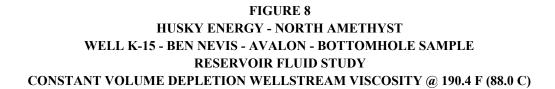


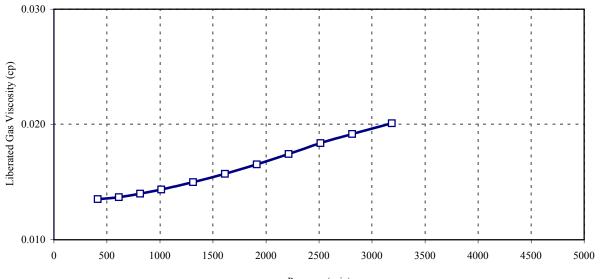
FIGURE 5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT VOLUME DEPLETION CUMULATIVE PRODUCED FLUID @ 190.4 F (88.0 C)



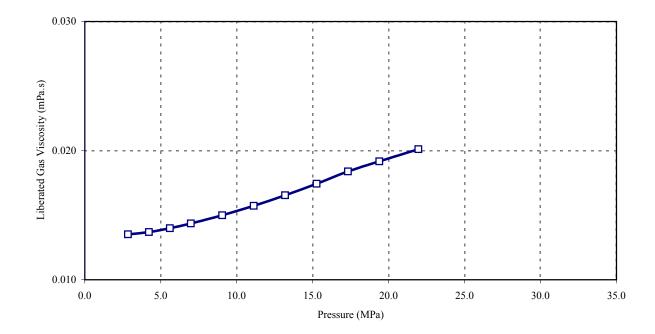

FIGURE 6 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY CONSTANT VOLUME DEPLETION CONDENSATE-GAS RATIO @ 190.4 F (88.0 C)

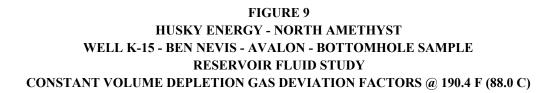

18

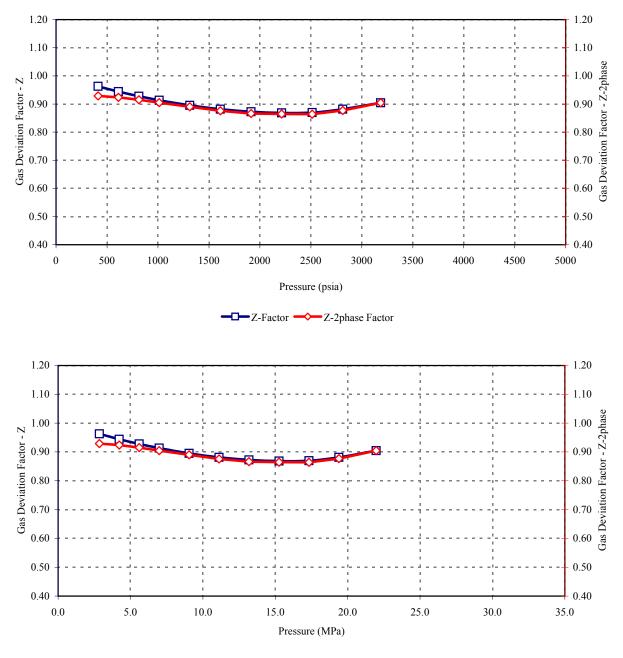


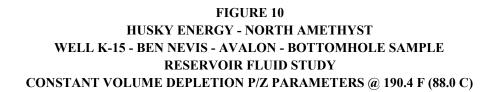


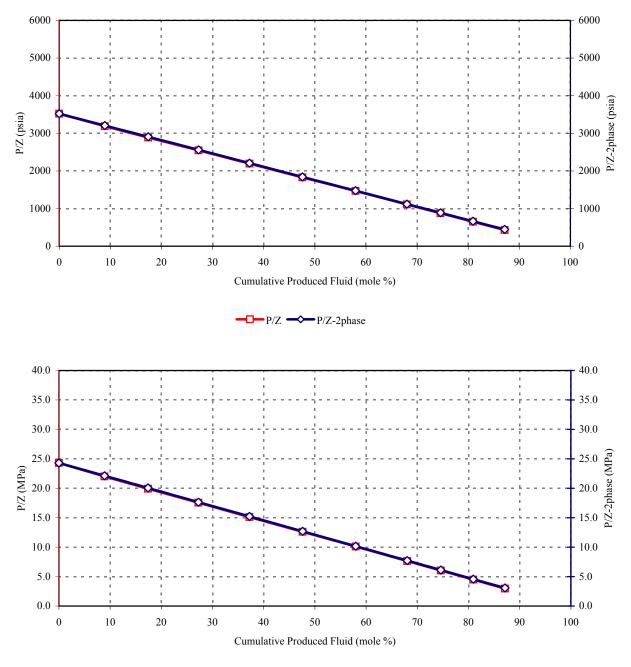
Pressure (psia)



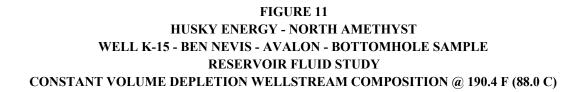


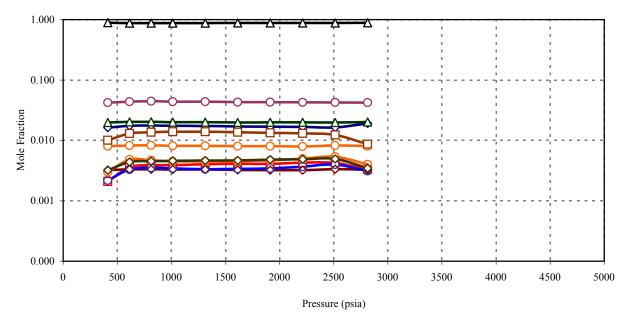


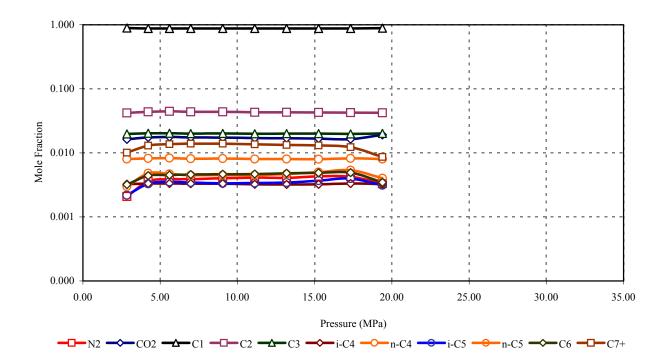




-□-Z-Factor → Z-2phase Factor






 $-\Box - P/Z \longrightarrow P/Z-2$ phase

APPENDIX A

SAMPLE VALIDATION

TABLE A1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point	Component Name	Chemical Symbol	Mole Fraction	Mass Fraction	Calculated Properties	
(F)	Name	Symbol	Fraction	Fraction		
-320.4	Nitrogen	N_2	0.0052	0.0070	Total Sample	
-109.3	Carbon Dioxide	CO ₂	0.0161	0.0344	roun sumple	
-76.6	Hydrogen Sulphide	H_2S	0.0000	0.0000	Molecular Weight	20.64
-259.1	Methane	C ₁	0.8813	0.6853	Density (g/cc)	0.3321
-128.0	Ethane	C_2	0.0398	0.0580		
-44.0	Propane	C_3	0.0198	0.0424	C ₆₊ Fraction	
10.9	i-Butane	i-C ₄	0.0031	0.0089	07	
30.9	n-Butane	n-C ₄	0.0077	0.0216	Molecular Weight	117.88
82.0	i-Pentane	i-C ₅	0.0022	0.0076	Mole Fraction	0.0218
97.0	n-Pentane	n-C ₅	0.0029	0.0103	Density (g/cc)	0.7752
97 - 156	Hexanes	C ₆	0.0033	0.0137		
156 - 208.9	Heptanes	C ₇	0.0019	0.0093	C ₇₊ Fraction	
208.9 - 258.1	Octanes	C ₈	0.0015	0.0082		
258.1 - 303.1	Nonanes	C ₉	0.0013	0.0082	Molecular Weight	104.10
303.1 - 345	Decanes	C ₁₀	0.0011	0.0074	Mole Fraction	0.0185
345 - 385	Undecanes	C ₁₁	0.0008	0.0059	Density (g/cc)	0.7880
385 - 419	Dodecanes	C ₁₂	0.0009	0.0069		
419 - 455	Tridecanes	C ₁₂	0.0008	0.0069	C ₁₂₊ Fraction	
455 - 486	Tetradecanes	C ₁₄	0.0006	0.0054	- 12+	
486 - 519.1	Pentadecanes	C ₁₅	0.0005	0.0045	Molecular Weight	203.48
519.1 - 550	Hexadecanes	C ₁₆	0.0004	0.0041	Mole Fraction	0.0038
550 - 557	Heptadecanes	C ₁₇	0.0002	0.0027	Density (g/cc)	0.8326
557 - 603	Octadecanes	C ₁₈	0.0002	0.0024		
603 - 626	Nonadecanes	C ₁₉	0.0001	0.0012		
626 - 651.9	Eicosanes	C ₂₀	0.0000	0.0004		
651.9 - 675	Heneicosanes	C ₂₁	0.0000	0.0003		
675 - 696.9	Docosanes	C ₂₂	0.0000	0.0002		
696.9 - 716	Tricosanes	C ₂₃	0.0000	0.0002		
716 - 736	Tetracosanes	C ₂₄	0.0000	0.0002		
736 - 755.1	Pentacosanes	C ₂₅	0.0000	0.0002		
755.1 - 774	Hexacosanes	C ₂₆	0.0000	0.0002	Recombination Parameters	
774.1 - 792	Heptacosanes	C ₂₇	0.0000	0.0002		
792.1 - 809.1	Octacosanes	C ₂₈	0.0000	0.0002	Gas-Oil Ratio (cc/cc)	9750.19
809.1 - 826	Nonacosanes	C ₂₉	0.0000	0.0002	Dead Oil Density (g/cc)	0.7700
Above 826	Tricontanes Plus	C ₃₀₊	0.0001	0.0019	Dead Oil MW (g/mol)	136.70
	NAPHTHENES					
120.0	Cyclopentane	C5H10	0.0001	0.0002		
162.0	Methylcyclopentane	C ₆ H ₁₂	0.0049	0.0199		
178.0	Cyclohexane	C ₆ H ₁₂	0.0008	0.0032		
214.0	Methylcyclohexane	C_7H_{14}	0.0008	0.0039		
	AROMATICS					
176.0	Benzene	C_6H_6	0.0005	0.0020		
231.1	Toluene	C_7H_8	0.0006	0.0027		
277 - 282	Ethylbenzene & p,m-Xylene	C_8H_{10}	0.0002	0.0008		
291.9	o-Xylene	C_8H_{10}	0.0001	0.0005		
336.0	1, 2, 4-Trimethylbenzene	C9H12	0.0001	0.0005		
Total	Physical Properties calculated ba		1.0000	1.0000		

Note:

Physical Properties calculated based GPA 2145-00 physical constants

TABLE A2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED OIL

Boiling Point	Component	Chemical	Mole	Mass	Calculated Properties	
(F)	Name	Symbol	Fraction	Fraction		
			0.0	0.0		
-320.4	Nitrogen	N ₂	0.0000	0.0000	Total Sample	
-109.3	Carbon Dioxide	CO ₂	0.0000	0.0000		126 50
-76.6	Hydrogen Sulphide	H ₂ S	0.0000	0.0000	Molecular Weight	136.70
-259.1	Methane	C ₁	0.0000	0.0000	Density (g/cc)	0.7880
-128.0	Ethane	C ₂	0.0000	0.0000		
-44.0	Propane	C ₃	0.0002	0.0001	C ₆₊ Fraction	
10.9	i-Butane	i-C ₄	0.0005	0.0002		120.04
30.9	n-Butane	n-C ₄	0.0034	0.0015	Molecular Weight	139.04
82.0	i-Pentane	i-C ₅	0.0089	0.0048	Mole Fraction	0.9660
97.0	n-Pentane	n-C ₅	0.0210	0.0113	Density (g/cc)	0.7919
97 - 156	Hexanes	C ₆	0.0706	0.0455		
156 - 208.9	Heptanes	C ₇	0.0919	0.0688	C ₇₊ Fraction	
208.9 - 258.1	Octanes	C ₈	0.1066	0.0910		
258.1 - 303.1	Nonanes	C ₉	0.0979	0.0938	Molecular Weight	143.63
303.1 - 345	Decanes	C ₁₀	0.0799	0.0849	Mole Fraction	0.8902
345 - 385	Undecanes	C ₁₁	0.0616	0.0677	Density (g/cc)	0.7979
385 - 419	Dodecanes	C ₁₂	0.0651	0.0783		
419 - 455	Tridecanes	C ₁₃	0.0607	0.0794	C ₁₂₊ Fraction	
455 - 486	Tetradecanes	C ₁₄	0.0435	0.0617		
486 - 519.1	Pentadecanes	C ₁₅	0.0336	0.0518	Molecular Weight	203.48
519.1 - 550	Hexadecanes	C ₁₆	0.0283	0.0469	Mole Fraction	0.2852
550 - 557	Heptadecanes	C ₁₇	0.0171	0.0303	Density (g/cc)	0.8326
557 - 603	Octadecanes	C ₁₈	0.0144	0.0271		
603 - 626	Nonadecanes	C ₁₉	0.0067	0.0132		
626 - 651.9	Eicosanes	C ₂₀	0.0024	0.0050		
651.9 - 675	Heneicosanes	C ₂₁	0.0013	0.0029		
675 - 696.9	Docosanes	C ₂₂	0.0009	0.0021		
696.9 - 716	Tricosanes	C ₂₃	0.0008	0.0020		
716 - 736	Tetracosanes	C ₂₄	0.0007	0.0019		
736 - 755.1	Pentacosanes	C ₂₅	0.0007	0.0018		
755.1 - 774	Hexacosanes	C ₂₆	0.0007	0.0018		
774.1 - 792	Heptacosanes	C ₂₇	0.0007	0.0019		
792.1 - 809.1	Octacosanes	C ₂₈	0.0007	0.0021		
809.1 - 826	Nonacosanes	C ₂₉	0.0007	0.0022		
Above 826	Tricontanes Plus	C ₃₀₊	0.0060	0.0209		
120.0	NAPHTHENES	сu	0.0052	0.0027		
120.0	Cyclopentane	C_5H_{10}	0.0052	0.0027		
162.0	Methylcyclopentane	C_6H_{12}	0.0202	0.0127		
178.0	Cyclohexane	C ₆ H ₁₂	0.0255	0.0160		
214.0	Methylcyclohexane	C_7H_{14}	0.0414	0.0303		
	AROMATICS					
176.0	Benzene	C ₆ H ₆	0.0187	0.0109		
231.1	Toluene	C ₇ H ₈	0.0359	0.0247		
277 - 282	Ethylbenzene & p,m-Xylene	C_8H_{10}	0.0114	0.0091		
291.9	o-Xylene	C_8H_{10}	0.0076	0.0060		
336.0	1, 2, 4-Trimethylbenzene	C ₉ H ₁₂	0.0064	0.0058		
Total	Divisional Properties calculated by	1 6 5 4 6 1 4	1.0000	1.0209		

Note:

Physical Properties calculated based GPA 2145-00 physical constants

TABLE A3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED GAS

Component	Chemical	Mole	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	(STB/MMscf)	(mL/m^3)
Nitrogen	N ₂	0.0052	0.0053		
Carbon Dioxide	CO_2	0.0163	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8933	0.9082		
Ethane	C ₂	0.0404	0.0411		
Propane	C_3	0.0201	0.0204	13.135	73.746
i-Butane	i-C ₄	0.0032	0.0032	2.469	13.860
n-Butane	n-C ₄	0.0077	0.0078	5.772	32.410
i-Pentane	i-C ₅	0.0021	0.0021	1.821	10.222
n-Pentane	n-C ₅	0.0027	0.0027	2.310	12.968
Hexanes	C_6	0.0024	0.0024	2.295	12.885
Heptanes	C ₇	0.0007	0.0007	0.746	4.190
Octanes	C_8	0.0000	0.0000	0.052	0.289
Nonanes	C ₉	0.0000	0.0000	0.007	0.040
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		0.9942	0.9941	28.606	160.611
Propanes Plus	C ₃₊	0.0389	0.0395	28.606	160.611
Butanes Plus	C ₄₊	0.0188	0.0191	15.471	86.865
Pentanes Plus	C ₅₊	0.0079	0.0080	7.230	40.594

Calculated Gas	Properties @ Standa	rd Conditions	Calcula	ted Pseudocritical Prop	erties
Molecular Weight	18.55 kg/kmol	18.55 lb/lb-mol	Ррс	667.2 psia	4.60 MPa
Specific Gravity	0.6405 (Air = 1)	0.6405 (Air = 1)	Трс	370.0 R	205.5 K
MW of C7+	0.07 kg/kmol	0.07 lb/lbmol	Ppc*	662.2 psia	4.57 MPa
Density of C7+	0.7236 g/cc	723.6 kg/m3	Tpc*	367.2 R	204.0 K

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net H	leating Value @ Stand	ard Conditions
Dry	1,094.1 Btu/scf	40.84 MJ/m3	Dry	988.7 Btu/scf	36.91 MJ/m3
Wet	1,075.0 Btu/scf	40.13 MJ/m3	Wet	971.5 Btu/scf	36.26 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

HUSKY ENERGY - NORTH AMETHYST MULTI-STAGE SEPARATOR TEST

FINAL REPORT

Prepared for

HUSKY ENERGY

By

Hycal Energy Research Laboratories Ltd. 1338A – 36th Avenue N.E. Calgary, Alberta Canada T2E 6T6 Tel: (403) 250 5800 <u>www.hycal.com</u>

April 26, 2007

Services performed by Hycal for this report are conducted in a manner consistent with recognized engineering standards and principles. Engineering judgement has been applied in developing the conclusions and/or recommendations contained in this report.

MULTI-STAGE SEPARATOR TEST

TABLE OF CONTENTS List of Tables	i ii
RESULTS AND DISCUSSION	1
SUMMARY	2
APPENDIX A Sample Validation	8
APPENDIX B Multi-Stage Separator Test - Material Balance	12
APPENDIX C Multi-Stage Separator Test - Liberated Gas Analyses	14

LIST OF TABLES

TABLE 1	SAMPLE COLLECTION DATA	3
TABLE 2	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	4
TABLE 3	MULTI-STAGE SEPARATOR OIL PROPERTIES	5
TABLE 4	MULTI-STAGE SEPARATOR GAS PROPERTIES @ 190.6 F (88.1 C)	6
TABLE 5	COMPOSITIONAL ANALYSIS OF RESIDUAL OIL	7
TABLE A1	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	9
TABLE A2	COMPOSITIONAL ANALYSIS OF FLASHED OIL	10
TABLE A3	COMPOSITIONAL ANALYSIS OF FLASHED GAS	11
TABLE B1	MULTI-STAGE SEPARATOR @ 190.6 F (88.1 C) - MATERIAL BALANCE	13
TABLE C1	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 580 psia (4.00 MPa) AND 185.0 F (85.0 C)	15
TABLE C2	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 348 psia (2.40 MPa) AND 136.4 F (58.0 C)	16
TABLE C3	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 180 psia (1.24 MPa) AND 131.0 F (55.0 C)	17
TABLE C4	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 29 psia (0.20 MPa) AND 122.0 F (50.0 C)	18
TABLE C5	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 13 psia (0.09 MPa) AND 60.0 F (15.6 C)	19

RESULTS AND DISCUSSION

The multi-stage separator test was conducted on a BOTTOMHOLE sample prepared from separator oil and separator gas collected from Well K-15 of NORTH AMETHYST reservoir.

The sample collection data is provided in Table 1 and the sample validation data is given in Appendix A.

Table 2 provides the compositional analysis of the BOTTOMHOLE sample.

Table 3 contains various oil property measurements performed on the multi-stage separator test including live oil density, oil formation volume factor and gas-oil ratios.

Table 4 contains a summary of the gas properties including gas gravities, deviation factors, gas formation volume factors and gas expansion factors.

Table 5 presents the compositional analysis of the residual oil at completion of the experiment.

Appendix B contains the material balance check performed for this experiment. It is displayed as formation volume factors so that the balance can be checked on a point by point basis. Appendix C contains the compositional analyses of the liberated gases from the multi-stage separator test.

SUMMARY

HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MAIN PVT RESULTS

INITIAL RESERVOIR CONDITIONS

Reservoir Pressure	3459.6 psia	23.85 MPa
Reservoir Temperature:	190.6 F	88.1 C

MULTI-STAGE SEPARATOR TEST

Residual Oil Density

API Gravity

Saturation Pressure	3022 psia	20.83 MPa
At Saturation Pressure		
Oil Formation Volume Factor	1.2775 res.bbl/STB	$1.2775 \text{ res.m}^3/\text{m}^3$
Solution Gas-Oil Ratio	548.31 scf/STB	97.65 m^3/m^3
Oil Density	0.7331 g/cm^3	733.1 kg/m ³
At Ambient Pressure		
Residual Oil Density	0.8509 g/cm^3	850.9 kg/m ³
At Tank Conditions		
Residual Oil Density	0.8508 g/cm^3	850.8 kg/m ³
API Gravity	34.8	34.8
SINGLE-STAGE SEPARATOR TEST		
At Saturation Pressure		
Oil Formation Volume Factor	1.2710 res.bbl/STB	$1.2710 \text{ res.m}^3/\text{m}^3$
Solution Gas-Oil Ratio	575.58 scf/STB	$102.51 \text{ m}^3/\text{m}^3$
At Tank Conditions		

0.8417 g/cm³

36.6

841.7 kg/m³

36.6

TABLE 1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY SAMPLE COLLECTION DATA

Project File:	2006-147
Operator Name:	HUSKY ENERGY
Pool or Zone:	BEN NEVIS - AVALON
Field or Area:	NORTH AMETHYST
Well Location:	K-15
Fluid Sample:	BOTTOMHOLE
Sampling Company:	Schlumberger
Name of Sampler:	N/A
Sampling Date:	39023
Sampling Point:	SUBSURFACE
Sampling Temperature:	190.6 F 88.1 C
Sampling Pressure:	3459.6 psia 23.85 MPa
Reservoir Temperature: Reservoir Pressure: Initial Reservoir Pressure (Pi) Depth of Reported Pi	190.6 F 88.1 C 3459.6 psia 23.85 MPa 3459.6 psia 23.85 MPa 2390.0 mMD N/A mss

TABLE 2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point (K)			Mole Fraction	Mass Fraction	Calculated Proj	Calculated Properties		
(11)			Fraction					
77.4	Nitrogen	N2	0.0028	0.0007	Total Sample			
194.6	Carbon Dioxide	CO2	0.0116	0.0044	i otai Sampie			
212.8	Hydrogen Sulphide	H2S	0.0000	0.0000	Molecular Weight	114.39		
111.5	Methane	C1	0.4361	0.0612	Molecular Weight	111.52		
184.3	Ethane	C2	0.0393	0.0103				
231.0	Propane	C3	0.0271	0.0105	C6+ Fraction			
261.5	i-Butane	i-C4	0.0056	0.0028	Co + I faction			
272.6	n-Butane	n-C4	0.0161	0.0082	Molecular Weight	229.5		
301.0	i-Pentane	i-C5	0.0068	0.0043	Mole Fraction	0.444		
309.3	n-Pentane	n-C5	0.0107	0.0068	Density (g/cc)	0.866		
309.3 - 342	Hexanes	C6	0.0165	0.0008	Density (g/cc)	0.800		
342 - 371.4	Heptanes	C0 C7	0.0103	0.0124				
371.4 - 398.8	Octanes	C7 C8	0.0224	0.0137	C7+ Fraction			
					C/+ Fraction			
398.8 - 423.8	Nonanes	C9	0.0262	0.0293		225.4		
423.8 - 447	Decanes	C10	0.0261	0.0325	Molecular Weight	235.4		
447 - 469.3	Undecanes	C11	0.0256	0.0329	Mole Fraction	0.425		
469.3 - 488.2	Dodecanes	C12	0.0271	0.0382	Density (g/cc)	0.869		
488.2 - 508.2	Tridecanes	C13	0.0265	0.0405				
508.2 - 525.4	Tetradecanes	C14	0.0212	0.0352				
525.4 - 543.8	Pentadecanes	C15	0.0174	0.0314	C12+ Fraction			
543.8 - 560.9	Hexadecanes	C16	0.0161	0.0312				
560.9 - 564.8	Heptadecanes	C17	0.0134	0.0278	Molecular Weight	309.5		
564.8 - 590.4	Octadecanes	C18	0.0135	0.0295	Mole Fraction	0.261		
590.4 - 603.2	Nonadecanes	C19	0.0116	0.0267	Density (g/cc)	0.895		
603.2 - 617.5	Eicosanes	C20	0.0090	0.0217				
617.5 - 630.4	Heneicosanes	C21	0.0080	0.0205				
630.4 - 642.5	Docosanes	C22	0.0074	0.0198				
642.5 - 653.2	Tricosanes	C23	0.0069	0.0192				
653.2 - 664.3	Tetracosanes	C24	0.0062	0.0180				
664.3 - 674.9	Pentacosanes	C25	0.0060	0.0182				
674.9 - 685.4	Hexacosanes	C26	0.0055	0.0172				
685.4 - 695.4	Heptacosanes	C27	0.0051	0.0167				
695.4 - 704.9	Octacosanes	C28	0.0051	0.0173				
704.9 - 714.3	Nonacosanes	C29	0.0048	0.0169				
Above 714.3	Tricontanes Plus	C30+	0.0506	0.2619				
322.0	Cyclopentane	C5H10	0.0019	0.0012				
	Methylcyclopentane							
345.4 354.3		C6H12 C6H12	0.0076	0.0056				
	Cyclohexane Mathylayalahayana	C6H12 C7H14	0.0069	0.0051				
374.3	Methylcyclohexane	C/H14	0.0102	0.0087				
353.2	Benzene	С6Н6	0.0064	0.0043				
383.8	Toluene	C7H8	0.0084	0.0068				
409.3 - 412	Ethylbenzene & p,m-Xylene	C8H10	0.0028	0.0026				
417.5	o-Xylene	C8H10	0.0019	0.0017				
442.0	1, 2, 4-Trimethylbenzene	C9H12	0.0017	0.0017				
Total		•	1.0000	1.0000				

TABLE 3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MULTI-STAGE SEPARATOR OIL PROPERTIES

Press	Pressure		erature	Oil	Oil Formation Total Formation Gas-Oil Ratio		il Ratio Gas-Oil Ratio		il Ratio	
(psia)	(MPa)	(F)	(C)	Density (g/cm²)	Volume Factor [1]	Volume Factor [2]	Solution (scf/STB)	Liberated (scf/STB)	Solution (m²/m²)	Liberated (m°/m°)
3022 Psat 580 348 180 29 13	20.83 4.00 2.40 1.24 0.20 0.09	191 185 136 131 122 60	88.1 85.0 58.0 55.0 50.0 15.6	0.7331 0.8127 0.8293 0.8322 0.8409 0.8509	1.2775 1.0714 1.0448 1.0354 1.0155 1.0000	1.2775 3.3795 4.8201 8.6240 38.8752 56.6359	548.31 102.79 74.01 44.61 5.50 0.00	0.00 445.52 474.30 503.69 542.80 548.31	97.65 18.31 13.18 7.95 0.98 0.00	0.00 79.35 84.47 89.71 96.67 97.65

- Tank conditions: 60 F (288.7 K) @ 13 psia (0.0896 MPa); Standard conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa).

TABLE 4 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MULTI-STAGE SEPARATOR GAS PROPERTIES @ 190.6 F (88.1 C)

	Pressure		Tempe	erature	Gas G	ravity	Gas	Gas Deviation	Gas Formation	Gas Expansion
			Incremental	Cumulative	Density	Factor	Volume Factor	Factor		
	(psia)	(MPa)	(F)	(C)	(Air = 1)	(Air = 1)	(g/cm ³)	(-)	[1]	[2]
	3022 Psat	20.83	191	88.1						
	580	4.00	185	85.0	0.6861	0.6861	0.0282	0.9458	0.0291	34.377
	348	2.40	136	58.0	0.6837	0.6859	0.0180	0.9563	0.0447	22.375
	180	1.24	131	55.0	0.7394	0.6891	0.0100	0.9727	0.0846	11.821
	29	0.20	122	50.0	1.0321	0.7138	0.0022	0.9910	0.3916	2.553
	13	0.09	60	15.6	1.1304	0.7179	0.0012	0.9930	0.5697	1.755
[1]	Cubic feet (m	neters) of gas at i	indicated pressu	re and temperati	ure per cubic feet (meter) @ standar	d conditions			
[2]	[2] Cubic feet (meters) of gas @ standard conditions per cubic feet (meter) @ indicated pressure and temperature.									
Psat -	Psat - Saturation pressure									
-	Standard con	ditions: 60 F (28	88.7 K) @ 14.69	6 psia (0.10132	5 MPa)					

TABLE 5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESIDUAL OIL

Boiling Point			Mole	Mass	Calculated Properties	
(K)			Fraction	Fraction		
77.4	Nitrogen	N2	0.0000	0.0000	Total Sample	
194.6	Carbon Dioxide	CO2	0.0000	0.0000	i otar Sample	
212.8	Hydrogen Sulphide	H2S	0.0000	0.0000	Molecular Weight	223.02
111.5	Methane	П25 С1	0.0000	0.0000	Molecular weight	225.02
	Ethane	C1 C2				
184.3 231.0		C2 C3	0.0000 0.0101	0.0000 0.0020	C6+ Fraction	
261.5	Propane i-Butane	i-C4		0.0020	Co+ Fraction	
		1-C4 n-C4	0.0047		Mala and an Wai abd	222.51
272.6	n-Butane		0.0176	0.0046	Molecular Weight	233.5
301.0	i-Pentane	i-C5	0.0109	0.0035	Mole Fraction	0.938
309.3	n-Pentane	n-C5	0.0181	0.0058	Density (g/cc)	0.8313
309.3 - 342	Hexanes	C6	0.0314	0.0121		
342 - 371.4	Heptanes	C7	0.0361	0.0162		
371.4 - 398.8	Octanes	C8	0.0451	0.0231	C7+ Fraction	
398.8 - 423.8	Nonanes	C9	0.0538	0.0310		
423.8 - 447	Decanes	C10	0.0531	0.0339	Molecular Weight	239.3
447 - 469.3	Undecanes	C11	0.0516	0.0340	Mole Fraction	0.903
469.3 - 488.2	Dodecanes	C12	0.0554	0.0400	Density (g/cc)	0.836
488.2 - 508.2	Tridecanes	C13	0.0560	0.0439		
508.2 - 525.4	Tetradecanes	C14	0.0475	0.0405		
525.4 - 543.8	Pentadecanes	C15	0.0408	0.0377	C12+ Fraction	
543.8 - 560.9	Hexadecanes	C16	0.0379	0.0377		
560.9 - 564.8	Heptadecanes	C17	0.0305	0.0324	Molecular Weight	308.2
564.8 - 590.4	Octadecanes	C18	0.0319	0.0359	Mole Fraction	0.574
590.4 - 603.2	Nonadecanes	C19	0.0266	0.0313	Density (g/cc)	0.870
603.2 - 617.5	Eicosanes	C20	0.0204	0.0251		
617.5 - 630.4	Heneicosanes	C21	0.0183	0.0238		
630.4 - 642.5	Docosanes	C22	0.0168	0.0229		
642.5 - 653.2	Tricosanes	C23	0.0149	0.0213		
653.2 - 664.3	Tetracosanes	C24	0.0135	0.0201		
664.3 - 674.9	Pentacosanes	C25	0.0132	0.0204		
674.9 - 685.4	Hexacosanes	C26	0.0114	0.0184		
685.4 - 695.4	Heptacosanes	C27	0.0105	0.0176		
695.4 - 704.9	Octacosanes	C28	0.0104	0.0182		
704.9 - 714.3	Nonacosanes	C29	0.0098	0.0177		
Above 714.3	Tricontanes Plus	C30+	0.1093	0.2899		
110010 / 11.5		000	0.1075	0.2000		
322.0	Cyclopentane	C5H10	0.0039	0.0012		
345.4	Methylcyclopentane	C6H12	0.0104	0.0039		
354.3	Cyclohexane	C6H12	0.0138	0.0052		
374.3	Methylcyclohexane	C7H14	0.0207	0.0091		
353.2	Benzene	C6H6	0.0127	0.0044		
383.8	Toluene	C7H8	0.0176	0.0073		
409.3 - 412	Ethylbenzene & p,m-Xylene	C8H10	0.0060	0.0028		
417.5	o-Xylene	C8H10	0.0039	0.0018		
442.0	1, 2, 4-Trimethylbenzene	C9H12	0.0037	0.0020		
Total			1.0000	1.0000		

APPENDIX A

SAMPLE VALIDATION

TABLE A1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point	Component	Chemical	Mole	Mass	Calculated Properties	
(F)	Name	Symbol	Fraction	Fraction		
-320.4	Nitrogen	N_2	0.0028	0.0007	Total Sample	
-109.3	Carbon Dioxide	CO ₂	0.0116	0.0044	i oun sumpte	
-76.6	Hydrogen Sulphide	H_2S	0.0000	0.0000	Molecular Weight	114.39
-259.1	Methane	C ₁	0.4361	0.0612	Density (g/cc)	0.7544
-128.0	Ethane	C_2	0.0393	0.0103		
-44.0	Propane	C_3	0.0271	0.0104	C ₆₊ Fraction	
10.9	i-Butane	i-C ₄	0.0056	0.0028	~0+	
30.9	n-Butane	n-C ₄	0.0161	0.0082	Molecular Weight	229.51
82.0	i-Pentane	i-C ₅	0.0068	0.0043	Mole Fraction	0.4440
97.0	n-Pentane	n-C ₅	0.0107	0.0068	Density (g/cc)	0.8660
97 - 156	Hexanes	C ₆	0.0165	0.0124		
156 - 208.9	Heptanes	C ₇	0.0179	0.0121	C ₇₊ Fraction	
208.9 - 258.1	Octanes	C ₈	0.0224	0.0224	~ /+	
258.1 - 303.1	Nonanes	C ₉	0.0262	0.0293	Molecular Weight	235.43
303.1 - 345	Decanes	C ₁₀	0.0261	0.0325	Mole Fraction	0.4256
345 - 385	Undecanes	C ₁₀	0.0256	0.0329	Density (g/cc)	0.8695
385 - 419	Dodecanes	C ₁₂	0.0271	0.0322	Density (g.ee)	0.0075
419 - 455	Tridecanes	C ₁₂ C ₁₃	0.0265	0.0405	C ₁₂₊ Fraction	
455 - 486	Tetradecanes	C ₁₃ C ₁₄	0.0203	0.0352		
486 - 519.1	Pentadecanes	C ₁₄ C ₁₅	0.0174	0.0314	Molecular Weight	309.59
519.1 - 550	Hexadecanes	C ₁₆	0.0161	0.0312	Mole Fraction	0.2615
550 - 557	Heptadecanes	C ₁₆ C ₁₇	0.0134	0.0278	Density (g/cc)	0.8956
557 - 603	Octadecanes	C ₁₈	0.0135	0.0295	Density (g.ee)	0.0950
603 - 626	Nonadecanes	C ₁₈ C ₁₉	0.0116	0.0255	C ₃₀₊ Fraction	
626 - 651.9	Eicosanes	C ₁₉ C ₂₀	0.0090	0.0207		
651.9 - 675	Heneicosanes	C ₂₀ C ₂₁	0.0080	0.0205	Molecular Weight	591.63
675 - 696.9	Docosanes	C ₂₁ C ₂₂	0.0074	0.0198	Mole Fraction	0.0506
696.9 - 716	Tricosanes	C ₂₂ C ₂₃	0.0069	0.0190	Density (g/cc)	0.9851
716 - 736	Tetracosanes	C ₂₃ C ₂₄	0.0062	0.0192	Density (g/ee)	0.9051
736 - 755.1	Pentacosanes	C ₂₄ C ₂₅	0.0060	0.0182		
755.1 - 774	Hexacosanes	C ₂₆	0.0055	0.0172	Recombination Parameters	
774.1 - 792	Heptacosanes	C ₂₆ C ₂₇	0.0051	0.0167		
792.1 - 809.1	Octacosanes	C ₂₈	0.0051	0.0173	Gas-Oil Ratio (cc/cc)	102.51
809.1 - 826	Nonacosanes	C ₂₈ C ₂₉	0.0048	0.0169	Dead Oil Density (g/cc)	0.8417
Above 826	Tricontanes Plus	C ₂₉ C ₃₀₊	0.0506	0.2619	Dead Oil MW (g/mol)	220.56
110010 020		030+	0.0000	0.2017	Doud on Mill (gintor)	220.00
	NAPHTHENES					
120.0	Cyclopentane	$C_{5}H_{10}$	0.0019	0.0012		
162.0	Methylcyclopentane	$C_{6}H_{12}$	0.0076	0.0056		
178.0	Cyclohexane	C_6H_{12} C_6H_{12}	0.0069	0.0050		
214.0	Methylcyclohexane	C ₇ H ₁₄	0.0102	0.0087		
211.0		~/··14	0.0102	0.0007		
	AROMATICS					
176.0	Benzene	C ₆ H ₆	0.0064	0.0043		
231.1	Toluene	C ₇ H ₈	0.0084	0.0068		
277 - 282	Ethylbenzene & p,m-Xylene	C_8H_{10}	0.0028	0.0026		
291.9	o-Xylene	C_8H_{10} C_8H_{10}	0.0019	0.0017		
336.0	1, 2, 4-Trimethylbenzene	$C_{9}H_{12}$	0.0017	0.0017		
Total	, ,	- 912	1.0000	1.0000		
Note:	Physical Properties calculated ba	sed on GPA 3			GC N	o.: 6162-7649

Note:

Physical Properties calculated based on GPA 2145-00 physical constants

GC No.: 6162-7649

TABLE A2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED OIL

Component Name	Chemical Symbol	Mole Fraction	Mass Fraction	Calculated Properties	
Name	Symbol	Fraction	Fraction		
litrogen	N ₂	0.0000	0.0000	Total Sample	
arbon Dioxide	CO ₂	0.0000	0.0000	- · · · · · · · · · · · · · · · · · · ·	
ydrogen Sulphide	H_2S	0.0000	0.0000	Molecular Weight	220.56
lethane	C1	0.0000	0.0000	Density (g/cc)	0.8595
thane	C ₂	0.0000	0.0000	, , ,	
ropane	C ₃	0.0088	0.0025	C ₆₊ Fraction	
Butane	i-C ₄	0.0047	0.0018	0.	
-Butane	n-C ₄	0.0178	0.0066	Molecular Weight	230.98
Pentane	i-C ₅	0.0114	0.0053	Mole Fraction	0.9380
-Pentane	n-C ₅	0.0193	0.0089	Density (g/cc)	0.8666
lexanes	C ₆	0.0328	0.0180		
leptanes	C ₇	0.0376	0.0240	C ₇₊ Fraction	
octanes	C ₈	0.0478	0.0349	· · ·	
lonanes	C ₉	0.0558	0.0457	Molecular Weight	236.97
ecanes	C ₁₀	0.0558	0.0507	Mole Fraction	0.9011
Indecanes	C ₁₁	0.0546	0.0513	Density (g/cc)	0.8698
odecanes	C ₁₂	0.0579	0.0595		
ridecanes	C ₁₃	0.0565	0.0631	C ₁₂₊ Fraction	
etradecanes	C ₁₄	0.0452	0.0548		
entadecanes	C ₁₅	0.0372	0.0489	Molecular Weight	309.59
lexadecanes	C ₁₆	0.0343	0.0486	Mole Fraction	0.5581
leptadecanes	C ₁₇	0.0286	0.0433	Density (g/cc)	0.8956
octadecanes	C ₁₈	0.0287	0.0460		
onadecanes	C ₁₉	0.0247	0.0415	C ₃₀₊ Fraction	
icosanes	C ₂₀	0.0193	0.0339		
leneicosanes	C ₂₁	0.0172	0.0319	Molecular Weight	591.63
locosanes	C ₂₂	0.0158	0.0309	Mole Fraction	0.0506
ricosanes	C ₂₃	0.0147	0.0299	Density (g/cc)	0.9851
etracosanes	C ₂₄	0.0133	0.0280		
entacosanes	C ₂₅	0.0129	0.0284		
lexacosanes	C ₂₆	0.0117	0.0269		
leptacosanes	C ₂₇	0.0109	0.0261		
ctacosanes	C ₂₈	0.0109	0.0269		
lonacosanes	C ₂₉	0.0103	0.0263		
ricontanes Plus	C ₃₀₊	0.1081	0.2899		
NAPHTHENES					
vclopentane	C5H10	0.0041	0.0018		
fethylcyclopentane	$C_{6}H_{12}$	0.0041	0.0018		
vclohexane	C_6H_{12} C_6H_{12}	0.0110	0.0077		
Iethylcyclohexane	$C_{6}H_{12}$ $C_{7}H_{14}$	0.0215	0.0135		
AROMATICS					
enzene	C ₆ H ₆	0.0132	0.0066		
oluene		0.0132	0.0000		
, 2, 4-Trimethylbenzene					
, 2, - -11111001191001120110	C91112				
thylbenze -Xylene , 2, 4-Trir		nethylbenzene C_8H_{10} C_9H_{12}	$\begin{array}{c} \mbox{me \& p,m-Xylene} & C_8 H_{10} & 0.0059 \\ C_8 H_{10} & 0.0040 \\ methylbenzene & C_9 H_{12} & 0.0035 \\ \hline & 1.0000 \end{array}$	$\begin{array}{c c} \mbox{ne \& p,m-Xylene} & C_8 H_{10} & 0.0059 & 0.0040 \\ C_8 H_{10} & 0.0040 & 0.0027 \\ \mbox{nethylbenzene} & C_9 H_{12} & 0.0035 & 0.0027 \\ \hline & & 1.0000 & 1.2899 \end{array}$	ene & p,m-Xylene C_8H_{10} 0.00590.0040 C_8H_{10} 0.00400.0027nethylbenzene C_9H_{12} 0.00350.0027

TABLE A3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED GAS

Component	Chemical	Mole	Fraction	Liquid	Volume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0053	0.0054		
Carbon Dioxide	CO_2	0.0217	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8206	0.8388		
Ethane	C ₂	0.0740	0.0756		
Propane	C ₃	0.0432	0.0442	28.210	158.387
i-Butane	i-C ₄	0.0063	0.0064	4.868	27.329
n-Butane	n-C ₄	0.0146	0.0149	10.895	61.168
i-Pentane	i-C ₅	0.0027	0.0028	2.368	13.293
n-Pentane	n-C ₅	0.0032	0.0033	2.743	15.398
Hexanes	C_6	0.0022	0.0022	2.125	11.930
Heptanes	C ₇	0.0060	0.0061	6.544	36.742
Octanes	C_8	0.0003	0.0003	0.371	2.083
Nonanes	C ₉	0.0000	0.0000	0.023	0.131
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	58.146	326.461
Propanes Plus	C ₃₊	1.1524	1.1558	116.292	652.922
Butanes Plus	C ₄₊	1.0784	1.0802	116.292	652.922
Pentanes Plus	C ₅₊	1.0290	1.0296	83.214	467.206

Calculated Gas	Properties @ Standa	rd Conditions	Calculated Pseudocritical Properties			
Molecular Weight	20.83 kg/kmol	20.83 lb/lb-mol	Ррс	670.5 psia	4.62 MPa	
Specific Gravity	0.7193 (Air = 1)	0.7193 (Air = 1)	Трс	392.9 R	218.3 K	
MW of C7+	0.61 kg/kmol	0.61 lb/lbmol	Ppc*	664.4 psia	4.58 MPa	
Density of C7+	5			389.3 R	216.3 K	

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net H	leating Value @ Stand	lard Conditions
Dry	v 1,205.1 Btu/scf 44.98 MJ/m3		Dry	1,092.3 Btu/scf	40.77 MJ/m3
Wet	Vet 1,184.2 Btu/scf 44.20 MJ/m3		Wet	1,073.3 Btu/scf	40.06 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

APPENDIX B

MULTI-STAGE SEPARATOR TEST - MATERIAL BALANCE

TABLE B1HUSKY ENERGY - NORTH AMETHYSTWELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLERESERVOIR FLUID STUDYMULTI-STAGE SEPARATOR @ 190.6 F (88.1 C) - MATERIAL BALANCE

Pressu	ire	Measured Oil FVF	Calculated Oil FVF	Absolute Relative Error
(psia)	(psia) (MPa)		[1]	(%)
3022 Psat	20.83	1.2775	1.2775	0.0000
580	4.00	1.0714	1.0705	0.0808
348	2.40	1.0448	1.0438	0.0907
180	1.24	1.0354	1.0346	0.0771
29	0.20	1.0155	1.0134	0.2065
13	0.09	1.0000	0.9999	0.0080
[1] (res bbl/STB) (re	es m3/m3)			
Psat - Saturation Pres	sure			
- Tank conditions	: 60 F (288.7 K)	@ 13 psia (0.09 MI	Pa)	

APPENDIX C

MULTI-STAGE SEPARATOR TEST - LIBERATED GAS ANALYSES

TABLE C1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 580 psia (4.00 MPa) AND 185.0 F (85.0 C)

Component	Chemical	Mole I	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0037	0.0038		
Carbon Dioxide	CO_2	0.0195	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8630	0.8802		
Ethane	C_2	0.0574	0.0585		
Propane	C ₃	0.0274	0.0280	17.921	100.616
i-Butane	i-C ₄	0.0038	0.0038	2.923	16.411
n-Butane	n-C ₄	0.0090	0.0091	6.703	37.634
i-Pentane	i-C ₅	0.0027	0.0028	2.364	13.274
n-Pentane	n-C ₅	0.0034	0.0035	2.911	16.344
Hexanes	C ₆	0.0026	0.0026	2.504	14.061
Heptanes	C ₇	0.0069	0.0071	7.605	42.698
Octanes	C_8	0.0005	0.0005	0.603	3.387
Nonanes	C ₉	0.0000	0.0001	0.067	0.375
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	43.601	244.799
Propanes Plus	C ₃₊	0.0563	0.0575	43.601	244.799
Butanes Plus	C ₄₊	0.0289	0.0295	25.680	144.183
Pentanes Plus	C ₅₊	0.0162	0.0165	16.054	90.138

Calculated Gas	Properties @ Standa	rd Conditions	Calculated Pseudocritical Properties			
Molecular Weight	19.87 kg/kmol	19.87 lb/lb-mol	Ррс	670.6 psia	4.62 MPa	
Specific Gravity	0.6861 (Air = 1)	0.6861 (Air = 1)	Трс	381.8 R	212.1 K	
MW of C7+	96.90 kg/kmol	96.90 lb/lbmol	Ppc*	664.9 psia	4.58 MPa	
Density of C7+	C			378.6 R	210.3 K	

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net	Heating Value @ Stan	dard Conditions
Dry	1,161.9 Btu/scf 43.37 MJ/m3		Dry	1,051.8 Btu/scf	39.26 MJ/m3
Wet 1,141.7 Btu/scf 42.62 MJ/m3		Wet	1,033.5 Btu/scf	38.58 MJ/m3	

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 348 psia (2.40 MPa) AND 136.4 F (58.0 C)

Component	Chemical	Mole I	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0047	0.0048		
Carbon Dioxide	CO_2	0.0229	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8515	0.8715		
Ethane	C ₂	0.0660	0.0676		
Propane	C ₃	0.0312	0.0319	20.374	114.388
i-Butane	i-C ₄	0.0041	0.0042	3.168	17.785
n-Butane	n-C ₄	0.0096	0.0099	7.213	40.500
i-Pentane	i-C ₅	0.0019	0.0020	1.670	9.378
n-Pentane	n-C ₅	0.0022	0.0023	1.896	10.644
Hexanes	C ₆	0.0015	0.0015	1.476	8.287
Heptanes	C ₇	0.0039	0.0040	4.244	23.827
Octanes	C_8	0.0004	0.0004	0.429	2.408
Nonanes	C ₉	0.0000	0.0000	0.055	0.309
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	40.525	227.527
Propanes Plus	C ₃₊	0.0548	0.0561	40.525	227.527
Butanes Plus	C ₄₊	0.0236	0.0242	20.151	113.139
Pentanes Plus	C ₅₊	0.0099	0.0101	9.770	54.854

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	19.80 kg/kmol	19.80 lb/lb-mol	Ррс	673.3 psia	4.64 MPa
Specific Gravity	0.6837 (Air = 1)	0.6837 (Air = 1)	Трс	382.2 R	212.3 K
MW of C7+	97.15 kg/kmol	97.15 lb/lbmol	Ppc*	666.7 psia	4.60 MPa
Density of C7+	0.7243 g/cc	724.3 kg/m3	Tpc*	378.5 R	210.3 K

Calculated Gross Heating Value @ Standard Conditions		Calculated Net Heating Value @ Standard Conditions			
Dry	1,147.4 Btu/scf	42.83 MJ/m3	Dry	1,038.5 Btu/scf	38.76 MJ/m3
Wet	1,127.5 Btu/scf	42.08 MJ/m3	Wet	1,020.4 Btu/scf	38.09 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 180 psia (1.24 MPa) AND 131.0 F (55.0 C)

Component	Chemical	Mole I	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0036	0.0037		
Carbon Dioxide	CO_2	0.0244	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.7957	0.8156		
Ethane	C ₂	0.0940	0.0964		
Propane	C ₃	0.0448	0.0459	29.225	164.086
i-Butane	i-C ₄	0.0058	0.0060	4.532	25.443
n-Butane	n-C ₄	0.0129	0.0132	9.646	54.159
i-Pentane	i-C ₅	0.0038	0.0039	3.294	18.492
n-Pentane	n-C ₅	0.0044	0.0045	3.793	21.296
Hexanes	C ₆	0.0030	0.0030	2.904	16.306
Heptanes	C ₇	0.0071	0.0073	7.765	43.596
Octanes	C_8	0.0005	0.0005	0.602	3.377
Nonanes	C ₉	0.0001	0.0001	0.077	0.435
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	61.838	347.191
Propanes Plus	C ₃₊	0.0823	0.0844	61.838	347.191
Butanes Plus	C_{4+}	0.0376	0.0385	32.613	183.105
Pentanes Plus	C ₅₊	0.0188	0.0193	18.435	103.503

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	21.42 kg/kmol	21.42 lb/lb-mol	Ррс	671.9 psia	4.63 MPa
Specific Gravity	0.7394 (Air = 1)	0.7394 (Air = 1)	Трс	399.9 R	222.1 K
MW of C7+	96.90 kg/kmol	96.90 lb/lbmol	Ppc*	665.3 psia	4.59 MPa
Density of C7+	0.7238 g/cc	723.8 kg/m3	Tpc*	395.9 R	220.0 K

Calculated Gross Heating Value @ Standard Conditions		Calculated Net Heating Value @ Standard Conditions			
Dry	1,233.0 Btu/scf	46.02 MJ/m3	Dry	1,118.4 Btu/scf	41.75 MJ/m3
Wet	1,211.6 Btu/scf	45.22 MJ/m3	Wet	1,098.9 Btu/scf	41.02 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C4 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 29 psia (0.20 MPa) AND 122.0 F (50.0 C)

Component	Chemical	Mole	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0006	0.0006		
Carbon Dioxide	CO_2	0.0314	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.5155	0.5322		
Ethane	C_2	0.1875	0.1936		
Propane	C ₃	0.1414	0.1460	92.357	518.538
i-Butane	i-C ₄	0.0221	0.0228	17.173	96.419
n-Butane	n-C ₄	0.0530	0.0547	39.668	222.716
i-Pentane	i-C ₅	0.0116	0.0120	10.067	56.521
n-Pentane	n-C ₅	0.0136	0.0140	11.664	65.485
Hexanes	C_6	0.0076	0.0079	7.441	41.779
Heptanes	C ₇	0.0151	0.0156	16.520	92.751
Octanes	C_8	0.0005	0.0005	0.634	3.562
Nonanes	C ₉	0.0000	0.0000	0.058	0.324
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	195.582	1098.094
Propanes Plus	C_{3^+}	0.2650	0.2736	195.582	1098.094
Butanes Plus	C_{4+}	0.1236	0.1276	103.225	579.556
Pentanes Plus	C ₅₊	0.0484	0.0500	46.384	260.422

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	29.89 kg/kmol	29.89 lb/lb-mol	Ppc	660.8 psia	4.56 MPa
Specific Gravity	1.0321 (Air = 1)	1.0321 (Air = 1)	Трс	491.6 R	273.1 K
MW of C7+	96.44 kg/kmol	96.44 lb/lbmol	Ppc*	654.3 psia	4.51 MPa
Density of C7+	0.7229 g/cc	722.9 kg/m3	Tpc*	486.8 R	270.4 K

Calculated Gross Heating Value @ Standard Conditions		Calculated Net Heating Value @ Standard Conditions			
Dry	1,676.8 Btu/scf	62.59 MJ/m3	Dry	1,532.6 Btu/scf	57.21 MJ/m3
Wet	1,647.6 Btu/scf	61.50 MJ/m3	Wet	1,505.9 Btu/scf	56.21 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 13 psia (0.09 MPa) AND 60.0 F (15.6 C)

Component	Chemical	Mole F	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0003	0.0003		
Carbon Dioxide	CO_2	0.0276	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C ₁	0.4430	0.4556		
Ethane	C ₂	0.2120	0.2180		
Propane	C ₃	0.1593	0.1639	104.051	584.197
i-Butane	i-C ₄	0.0241	0.0248	18.684	104.903
n-Butane	n-C ₄	0.0557	0.0572	41.638	233.777
i-Pentane	i-C ₅	0.0197	0.0203	17.135	96.205
n-Pentane	n-C ₅	0.0226	0.0232	19.399	108.915
Hexanes	C ₆	0.0117	0.0120	11.432	64.183
Heptanes	C ₇	0.0233	0.0240	25.531	143.343
Octanes	C_8	0.0007	0.0007	0.813	4.562
Nonanes	C ₉	0.0001	0.0001	0.070	0.391
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	238.752	1340.477
Propanes Plus	C ₃₊	0.3171	0.3261	238.752	1340.477
Butanes Plus	C_{4+}	0.1578	0.1622	134.701	756.280
Pentanes Plus	C ₅₊	0.0780	0.0802	74.379	417.600

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	32.74 kg/kmol	32.74 lb/lb-mol	Ррс	652.5 psia	4.50 MPa
Specific Gravity	1.1304 (Air = 1)	1.1304 (Air = 1)	Трс	519.7 R	288.7 K
MW of C7+	96.36 kg/kmol	96.36 lb/lbmol	Ppc*	647.0 psia	4.46 MPa
Density of C7+	0.7227 g/cc	722.7 kg/m3	Tpc*	515.3 R	286.3 K

Calculated Gross Heating Value @ Standard Conditions		Calculated Net Heating Value @ Standard Conditions			
Dry	1,841.2 Btu/scf	68.73 MJ/m3	Dry	1,685.8 Btu/scf	62.93 MJ/m3
Wet	1,809.2 Btu/scf	67.53 MJ/m3	Wet	1,656.5 Btu/scf	61.83 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

HUSKY ENERGY - NORTH AMETHYST MULTI-STAGE SEPARATOR TEST

FINAL REPORT

Prepared for

HUSKY ENERGY

By

Hycal Energy Research Laboratories Ltd. 1338A – 36th Avenue N.E. Calgary, Alberta Canada T2E 6T6 Tel: (403) 250 5800 <u>www.hycal.com</u>

April 26, 2007

Services performed by Hycal for this report are conducted in a manner consistent with recognized engineering standards and principles. Engineering judgement has been applied in developing the conclusions and/or recommendations contained in this report.

MULTI-STAGE SEPARATOR TEST

TABLE OF CONTENTS List of Tables	i ii
RESULTS AND DISCUSSION	1
SUMMARY	2
APPENDIX A Sample Validation	8
APPENDIX B Multi-Stage Separator Test - Material Balance	12
APPENDIX C Multi-Stage Separator Test - Liberated Gas Analyses	14

LIST OF TABLES

TABLE 1	SAMPLE COLLECTION DATA	3
TABLE 2	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	4
TABLE 3	MULTI-STAGE SEPARATOR OIL PROPERTIES	5
TABLE 4	MULTI-STAGE SEPARATOR GAS PROPERTIES @ 191.1 F (88.4 C)	6
TABLE 5	COMPOSITIONAL ANALYSIS OF RESIDUAL OIL	7
TABLE A1	COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID	9
TABLE A2	COMPOSITIONAL ANALYSIS OF FLASHED OIL	10
TABLE A3	COMPOSITIONAL ANALYSIS OF FLASHED GAS	11
TABLE B1	MULTI-STAGE SEPARATOR @ 191.1 F (88.4 C) - MATERIAL BALANCE	13
TABLE C1	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 580 psia (4.00 MPa) AND 185.0 F (85.0 C)	15
TABLE C2	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 348 psia (2.40 MPa) AND 136.4 F (58.0 C)	16
TABLE C3	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 180 psia (1.24 MPa) AND 131.0 F (55.0 C)	17
TABLE C4	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 29 psia (0.20 MPa) AND 122.0 F (50.0 C)	18
TABLE C5	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 13 psia (0.09 MPa) AND 60.0 F (15.6 C)	19
TABLE C5	MULTI-STAGE SEPARATOR GAS COMPOSITION @ 13 psia (0.09 MPa) AND 60.0 F (15.6 C)	20

RESULTS AND DISCUSSION

The multi-stage separator test was conducted on a BOTTOMHOLE sample prepared from separator oil and separator gas collected from Well K-15 of NORTH AMETHYST reservoir.

The sample collection data is provided in Table 1 and the sample validation data is given in Appendix A.

Table 2 provides the compositional analysis of the BOTTOMHOLE sample.

Table 3 contains various oil property measurements performed on the multi-stage separator test including live oil density, oil formation volume factor and gas-oil ratios.

Table 4 contains a summary of the gas properties including gas gravities, deviation factors, gas formation volume factors and gas expansion factors.

Table 5 presents the compositional analysis of the residual oil at completion of the experiment.

Appendix B contains the material balance check performed for this experiment. It is displayed as formation volume factors so that the balance can be checked on a point by point basis. Appendix C contains the compositional analyses of the liberated gases from the multi-stage separator test.

SUMMARY

HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MAIN PVT RESULTS

INITIAL RESERVOIR CONDITIONS

Reservoir Pressure	3485 psia	24.03 MPa
Reservoir Temperature:	191.1 F	88.4 C

MULTI-STAGE SEPARATOR TEST

Saturation Pressure	3060 psia	21.10 MPa			
At Saturation Pressure					
Oil Formation Volume Factor	1.2966 res.bbl/STB	$1.2966 \text{ res.m}^3/\text{m}^3$			
Solution Gas-Oil Ratio	566.93 scf/STB	$100.97 \text{ m}^3/\text{m}^3$			
Oil Density	0.7241 g/cm^3	724.1 kg/m ³			
At Ambient Pressure					
Residual Oil Density	0.8502 g/cm^3	850.2 kg/m ³			
At Tank Conditions					
Residual Oil Density	0.8501 g/cm^3	850.1 kg/m ³			
API Gravity	35.0	35.0			
SINGLE-STAGE SEPARATOR TEST					
At Saturation Pressure					
Oil Formation Volume Factor	1.3048 res bbl/STB	1.3048 res m ³ /m ³			

Oil Formation Volume Factor	1.3048 res.bbl/STB	$1.3048 \text{ res.m}^3/\text{m}^3$
Solution Gas-Oil Ratio	594.93 scf/STB	$105.96 \text{ m}^3/\text{m}^3$
At Tank Conditions		
Residual Oil Density	0.8468 g/cm^3	846.8 kg/m ³
API Gravity	35.6	35.6

TABLE 1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY SAMPLE COLLECTION DATA

Project File:	2006-147
Operator Name:	HUSKY ENERGY
Pool or Zone:	BEN NEVIS - AVALON
Field or Area:	NORTH AMETHYST
Well Location:	K-15
Fluid Sample:	BOTTOMHOLE
Sampling Company:	Schlumberger
Name of Sampler:	N/A
Sampling Date:	2-Nov-06
Sampling Point:	SUBSURFACE
Sampling Temperature:	191.1 F 88.4 C
Sampling Pressure:	3484.7 psia 24.03 MPa
Reservoir Temperature: Reservoir Pressure: Initial Reservoir Pressure (Pi) Depth of Reported Pi	191.1 F88.4 C3484.7 psia24.03 MPa3484.7 psia24.03 MPa2415.0 mMDN/A mss

TABLE 2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point (K)			Mole Fraction	Mass Fraction	Calculated Prop	oerties
77.4	Nitrogen	N2	0.0137	0.0034	Total Sample	
194.6	Carbon Dioxide	CO2	0.0150	0.0058	-	
212.8	Hydrogen Sulphide	H2S	0.0000	0.0000	Molecular Weight	113.4
111.5	Methane	C1	0.4307	0.0609		
184.3	Ethane	C2	0.0382	0.0101		
231.0	Propane	C3	0.0270	0.0105	C6+ Fraction	
261.5	i-Butane	i-C4	0.0056	0.0029		
272.6	n-Butane	n-C4	0.0162	0.0083	Molecular Weight	230.8
301.0	i-Pentane	i-C5	0.0069	0.0044	Mole Fraction	0.435
309.3	n-Pentane	n-C5	0.0109	0.0069	Density (g/cc)	0.867
309.3 - 342	Hexanes	C6	0.0169	0.0128	5.6	
342 - 371.4	Heptanes	C7	0.0179	0.0158		
371.4 - 398.8	Octanes	C8	0.0225	0.0226	C7+ Fraction	
398.8 - 423.8	Nonanes	C9	0.0256	0.0290		
423.8 - 447	Decanes	C10	0.0237	0.0298	Molecular Weight	237.0
447 - 469.3	Undecanes	C11	0.0234	0.0303	Mole Fraction	0.416
469.3 - 488.2	Dodecanes	C12	0.0248	0.0351	Density (g/cc)	0.870
488.2 - 508.2	Tridecanes	C13	0.0245	0.0378		
508.2 - 525.4	Tetradecanes	C14	0.0212	0.0355		
525.4 - 543.8	Pentadecanes	C15	0.0188	0.0341	C12+ Fraction	
543.8 - 560.9	Hexadecanes	C16	0.0174	0.0340	012 / 1140404	
560.9 - 564.8	Heptadecanes	C17	0.0139	0.0290	Molecular Weight	311.4
564.8 - 590.4	Octadecanes	C18	0.0141	0.0312	Mole Fraction	0.25
590.4 - 603.2	Nonadecanes	C19	0.0117	0.0272	Density (g/cc)	0.890
603.2 - 617.5	Eicosanes	C20	0.0088	0.0212	Density (gree)	0.070
617.5 - 630.4	Heneicosanes	C21	0.0077	0.0198		
630.4 - 642.5	Docosanes	C22	0.0070	0.0198		
642.5 - 653.2	Tricosanes	C22	0.0065	0.0182		
653.2 - 664.3	Tetracosanes	C24	0.0058	0.0162		
664.3 - 674.9	Pentacosanes	C25	0.0056	0.0170		
674.9 - 685.4	Hexacosanes	C26	0.0050	0.0160		
685.4 - 695.4	Heptacosanes	C20 C27	0.0047	0.0154		
695.4 - 704.9	Octacosanes	C28	0.0047	0.0154		
704.9 - 714.3	Nonacosanes	C28 C29	0.0040	0.0153		
Above 714.3	Tricontanes Plus	C29 C30+	0.0516	0.2698		
Above /14.5	Theomanes Plus	C30+	0.0310	0.2098		
322.0	Cyclopentane	C5H10	0.0019	0.0012		
345.4	Methylcyclopentane	C6H12	0.0076	0.0056		
354.3	Cyclohexane	C6H12	0.0070	0.0052		
374.3	Methylcyclohexane	C7H14	0.0102	0.0088		
252.2	D	CCIV	0.00(2	0.0042		
353.2	Benzene	C6H6	0.0063	0.0043		
383.8	Toluene	C7H8	0.0083	0.0067		
409.3 - 412	Ethylbenzene & p,m-Xylene	C8H10	0.0028	0.0027		
417.5	o-Xylene	C8H10	0.0019	0.0018		
442.0	1, 2, 4-Trimethylbenzene	C9H12	0.0016	0.0017	1	

TABLE 3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MULTI-STAGE SEPARATOR OIL PROPERTIES

Press	ure	Tempe	erature	Oil	Oil Formation	Total Formation	Gas-O	il Ratio	Gas-O	il Ratio
(psia)	(MPa)	(F)	(C)	Density (g/cm³)	Volume Factor [1]	Volume Factor [2]	Solution (scf/STB)	Liberated (scf/STB)	Solution (m²/m²)	Liberated (m³/m³)
3060 Psat 580 348 180 29	21.10 4.00 2.40 1.24 0.20	191 185 136 131 122	88.4 85.0 58.0 55.0 50.0	0.7241 0.7985 0.8206 0.8301 0.8424	1.2966 1.0879 1.0541 1.0354 1.0122	1.2966 3.4740 4.9422 8.9442 40.2329	566.93 106.15 77.79 41.92 4.95	0.00 460.78 489.14 525.01 561.98	100.97 18.90 13.85 7.47 0.88	0.00 82.07 87.12 93.50 100.09
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
[1] Barrels (Cul	bic meters) of o s (cubic meters)	il at indicated pr				idual oil @ 60 F (28 barrel (cubic meter)		a) 60 F (288.7 K)).	

- Tank conditions: 60 F (288.7 K) @ 13 psia (0.0896 MPa); Standard conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa).

TABLE 4 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY MULTI-STAGE SEPARATOR GAS PROPERTIES @ 191.1 F (88.4 C)

Pressu	ire	Тетре	erature	Gas Gravity		Gas	Gas Deviation	Gas Formation	Gas Expansion
				Incremental	Cumulative	Density	Factor	Volume Factor	
(psia)	(MPa)	(F)	(C)	(Air = 1)	(Air = 1)	(g/cm ³)	(-)	[1]	[2]
3060 Psat	21.10	191	88.4						
580	4.00	185	85.0	0.6908	0.6908	0.0284	0.9453	0.0291	34.393
348	2.40	136	58.0	0.6973	0.6912	0.0184	0.9550	0.0446	22.406
180	1.24	131	55.0	0.7423	0.6947	0.0100	0.9726	0.0846	11.823
29	0.20	122	50.0	0.9990	0.7147	0.0022	0.9916	0.3919	2.552
13	0.09	60	15.6	1.1986	0.7189	0.0013	0.9924	0.5694	1.756
·		-	-	ure per cubic feet (
		standard conditi	ons per cubic fe	et (meter) @ indic	ated pressure and	temperature.			
Psat - Saturation pr	essure								
- Standard con	ditions: 60 F (2	88.7 K) @ 14.69	6 psia (0.10132	5 MPa)					

TABLE 5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESIDUAL OIL

Boiling Point			Mole	Mass	Calculated Properties	
(Ř)			Fraction	Fraction	•	
77.4	Nitrogen	N2	0.0000	0.0000	Total Sample	
194.6	Carbon Dioxide	CO2	0.0000	0.0000	-	
212.8	Hydrogen Sulphide	H2S	0.0000	0.0000	Molecular Weight	222.55
111.5	Methane	C1	0.0000	0.0000	_	
184.3	Ethane	C2	0.0000	0.0000		
231.0	Propane	C3	0.0114	0.0023	C6+ Fraction	
261.5	i-Butane	i-C4	0.0051	0.0013		
272.6	n-Butane	n-C4	0.0186	0.0049	Molecular Weight	233.67
301.0	i-Pentane	i-C5	0.0111	0.0036	Mole Fraction	0.9352
309.3	n-Pentane	n-C5	0.0185	0.0060	Density (g/cc)	0.8310
309.3 - 342	Hexanes	C6	0.0314	0.0122		
342 - 371.4	Heptanes	C7	0.0364	0.0164		
371.4 - 398.8	Octanes	C8	0.0457	0.0235	C7+ Fraction	
398.8 - 423.8	Nonanes	C9	0.0550	0.0317		
423.8 - 447	Decanes	C10	0.0554	0.0354	Molecular Weight	239.51
447 - 469.3	Undecanes	C11	0.0554	0.0366	Mole Fraction	0.8999
469.3 - 488.2	Dodecanes	C12	0.0596	0.0431	Density (g/cc)	0.8363
488.2 - 508.2	Tridecanes	C13	0.0569	0.0448		
508.2 - 525.4	Tetradecanes	C14	0.0448	0.0383		
525.4 - 543.8	Pentadecanes	C15	0.0362	0.0335	C12+ Fraction	
543.8 - 560.9	Hexadecanes	C16	0.0331	0.0330	C12+ I fuction	
560.9 - 564.8	Heptadecanes	C17	0.0277	0.0295	Molecular Weight	312.13
564.8 - 590.4	Octadecanes	C18	0.0286	0.0323	Mole Fraction	0.5615
590.4 - 603.2	Nonadecanes	C19	0.0245	0.0289	Density (g/cc)	0.8713
603.2 - 617.5	Eicosanes	C20	0.0193	0.0238	Density (gree)	0.0715
617.5 - 630.4	Heneicosanes	C20	0.0175	0.0228		
630.4 - 642.5	Docosanes	C21 C22	0.0173	0.0228		
642.5 - 653.2	Tricosanes	C22 C23	0.0102	0.0222		
653.2 - 664.3	Tetracosanes	C23 C24	0.0140	0.0209		
664.3 - 674.9	Pentacosanes	C24 C25	0.0133	0.0198		
674.9 - 685.4	Hexacosanes	C25 C26	0.0132	0.0203		
685.4 - 695.4		C20 C27	0.0113	0.0180		
695.4 - 704.9	Heptacosanes Octacosanes	C27 C28	0.0107	0.0180		
704.9 - 714.3		C28 C29				
	Nonacosanes		0.0103	0.0187		
Above 714.3	Tricontanes Plus	C30+	0.1125	0.2999		
322.0	Cyclopentane	C5H10	0.0039	0.0012		
345.4	Methylcyclopentane	C6H12	0.0106	0.0040		
354.3	Cyclohexane	C6H12	0.0140	0.0053		
374.3	Methylcyclohexane	C7H14	0.0210	0.0093		
	~					
353.2	Benzene	C6H6	0.0128	0.0045		
383.8	Toluene	C7H8	0.0184	0.0076		
409.3 - 412	Ethylbenzene & p,m-Xylene	C8H10	0.0061	0.0029		
417.5	o-Xylene 1, 2, 4-Trimethylbenzene	C8H10 C9H12	0.0040 0.0036	0.0019 0.0020		
442.0						

APPENDIX A

SAMPLE VALIDATION

TABLE A1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF RESERVOIR FLUID

Boiling Point	Component	Chemical	Mole	Mass	Calculated Properties	
(F)	Name	Symbol	Fraction	Fraction		
-320.4	Nitrogen	N ₂	0.0137	0.0034	Total Sample	
-109.3	Carbon Dioxide	CO ₂	0.0150	0.0058		
-76.6	Hydrogen Sulphide	H_2S	0.0000	0.0000	Molecular Weight	113.45
-259.1	Methane	C ₁	0.4307	0.0609	Density (g/cc)	0.7554
-128.0	Ethane	C ₂	0.0382	0.0101		
-44.0	Propane	C ₃	0.0270	0.0105	C ₆₊ Fraction	
10.9	i-Butane	i-C ₄	0.0056	0.0029		
30.9	n-Butane	n-C ₄	0.0162	0.0083	Molecular Weight	230.86
82.0	i-Pentane	i-C ₅	0.0069	0.0044	Mole Fraction	0.4358
97.0	n-Pentane	n-C ₅	0.0109	0.0069	Density (g/cc)	0.8673
97 - 156	Hexanes	C ₆	0.0169	0.0128		
156 - 208.9	Heptanes	C ₇	0.0179	0.0158	C ₇₊ Fraction	
208.9 - 258.1	Octanes	C ₈	0.0225	0.0226		
258.1 - 303.1	Nonanes	C ₉	0.0256	0.0290	Molecular Weight	237.09
303.1 - 345	Decanes	C ₁₀	0.0237	0.0298	Mole Fraction	0.4169
345 - 385	Undecanes	C ₁₁	0.0234	0.0303	Density (g/cc)	0.8709
385 - 419	Dodecanes	C ₁₂	0.0248	0.0351		
419 - 455	Tridecanes	C ₁₃	0.0245	0.0378	C ₁₂₊ Fraction	
455 - 486	Tetradecanes	C ₁₄	0.0212	0.0355		
486 - 519.1	Pentadecanes	C ₁₅	0.0188	0.0341	Molecular Weight	311.47
519.1 - 550	Hexadecanes	C ₁₆	0.0174	0.0340	Mole Fraction	0.2580
550 - 557	Heptadecanes	C ₁₇	0.0139	0.0290	Density (g/cc)	0.8967
557 - 603	Octadecanes	C ₁₈	0.0141	0.0312		
603 - 626	Nonadecanes	C ₁₉	0.0117	0.0272	C ₃₀₊ Fraction	
626 - 651.9	Eicosanes	C ₂₀	0.0088	0.0213		
651.9 - 675	Heneicosanes	C ₂₁	0.0077	0.0198	Molecular Weight	593.25
675 - 696.9	Docosanes	C ₂₂	0.0070	0.0189	Mole Fraction	0.0516
696.9 - 716	Tricosanes	C ₂₃	0.0065	0.0182	Density (g/cc)	0.9853
716 - 736	Tetracosanes	C ₂₄	0.0058	0.0168		
736 - 755.1	Pentacosanes	C ₂₅	0.0056	0.0170		
755.1 - 774	Hexacosanes	C ₂₆	0.0050	0.0160	Recombination Parameters	
774.1 - 792	Heptacosanes	C ₂₇	0.0047	0.0154		
792.1 - 809.1	Octacosanes	C ₂₈	0.0046	0.0158	Gas-Oil Ratio (cc/cc)	105.96
809.1 - 826	Nonacosanes	C ₂₉	0.0043	0.0153	Dead Oil Density (g/cc)	0.8468
Above 826	Tricontanes Plus	C ₃₀₊	0.0516	0.2698	Dead Oil MW (g/mol)	221.51
	NAPHTHENES					
120.0	Cyclopentane	$C_{5}H_{10}$	0.0019	0.0012		
162.0	Methylcyclopentane	C ₆ H ₁₂	0.0076	0.0056		
178.0	Cyclohexane	C ₆ H ₁₂	0.0070	0.0052		
214.0	Methylcyclohexane	C ₇ H ₁₄	0.0102	0.0088		
	AROMATICS					
176.0	Benzene	C ₆ H ₆	0.0063	0.0043		
231.1	Toluene	C ₇ H ₈	0.0083	0.0067		
277 - 282	Ethylbenzene & p,m-Xylene	C ₈ H ₁₀	0.0028	0.0027		
291.9	o-Xylene	C_8H_{10}	0.0019	0.0018		
336.0	1, 2, 4-Trimethylbenzene	C_9H_{12}	0.0016	0.0017		
Total	· · · · ·		1.0000	1.0000		
Note:	Physical Properties calculated ba	and on CDA			CC No.	.: 6161-7647

Note:

Physical Properties calculated based on GPA 2145-00 physical constants

GC No.: 6161-7647

TABLE A2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED OIL

Boiling Point (F)	Component Name	Chemical Symbol	Mole Fraction	Mass Fraction	Calculated Properties		
(F)	Name	Symbol	Fraction	Fraction			
-320.4	Nitrogen	N ₂	0.0000	0.0000	Total Sample		
-109.3	Carbon Dioxide	CO ₂	0.0000	0.0000	I I		
-76.6	Hydrogen Sulphide	H_2S	0.0000	0.0000	Molecular Weight	221.51	
-259.1	Methane	C ₁	0.0000	0.0000	Density (g/cc)	0.8606	
-128.0	Ethane	C ₂	0.0000	0.0000			
-44.0	Propane	C ₃	0.0095	0.0027	C ₆₊ Fraction		
10.9	i-Butane	i-C ₄	0.0049	0.0018			
30.9	n-Butane	n-C ₄	0.0184	0.0069	Molecular Weight	232.37	
82.0	i-Pentane	i-C ₅	0.0115	0.0054	Mole Fraction	0.9359	
97.0	n-Pentane	n-C ₅	0.0197	0.0092	Density (g/cc)	0.8679	
97 - 156	Hexanes	C ₆	0.0340	0.0189			
156 - 208.9	Heptanes	C ₇	0.0383	0.0248	C ₇₊ Fraction		
208.9 - 258.1	Octanes	C ₈	0.0487	0.0359			
258.1 - 303.1	Nonanes	C ₉	0.0556	0.0460	Molecular Weight	238.66	
303.1 - 345	Decanes	C ₁₀	0.0515	0.0473	Mole Fraction	0.8977	
345 - 385	Undecanes	C ₁₁	0.0508	0.0482	Density (g/cc)	0.8713	
385 - 419	Dodecanes	C ₁₂	0.0537	0.0558	_ = =====((g, e, e))		
419 - 455	Tridecanes	C ₁₂	0.0532	0.0600	C ₁₂₊ Fraction		
455 - 486	Tetradecanes	C ₁₄	0.0460	0.0564			
486 - 519.1	Pentadecanes	C ₁₅	0.0407	0.0541	Molecular Weight	311.47	
519.1 - 550	Hexadecanes	C ₁₆	0.0377	0.0540	Mole Fraction	0.5598	
550 - 557	Heptadecanes	C ₁₇	0.0301	0.0460	Density (g/cc)	0.8967	
557 - 603	Octadecanes	C ₁₈	0.0307	0.0496	Density (g/ce)	0.0707	
603 - 626	Nonadecanes	C ₁₈	0.0254	0.0432	C ₃₀₊ Fraction		
626 - 651.9	Eicosanes	C ₂₀	0.0191	0.0339	C ₃₀₊ 11 action		
651.9 - 675	Heneicosanes	C ₂₀ C ₂₁	0.0167	0.0314	Molecular Weight	593.25	
675 - 696.9	Docosanes	C ₂₁ C ₂₂	0.0153	0.0301	Mole Fraction	0.0516	
696.9 - 716	Tricosanes	C ₂₂ C ₂₃	0.0141	0.0289	Density (g/cc)	0.9853	
716 - 736	Tetracosanes	C ₂₃ C ₂₄	0.0125	0.0267	Density (g/ce)	0.9055	
736 - 755.1	Pentacosanes	C ₂₅	0.0120	0.0270			
755.1 - 774	Hexacosanes	C ₂₆	0.0121	0.0254			
774.1 - 792	Heptacosanes	C ₂₆ C ₂₇	0.0101	0.0244			
792.1 - 809.1	Octacosanes	C ₂₈	0.0100	0.0250			
809.1 - 826	Nonacosanes	C ₂₈ C ₂₉	0.0094	0.0244			
Above 826	Tricontanes Plus	C ₃₀₊	0.1120	0.2999			
		- 30+		••			
	NAPHTHENES						
120.0	Cyclopentane	C5H10	0.0042	0.0019			
162.0	Methylcyclopentane	C ₆ H ₁₂	0.0112	0.0061			
178.0	Cyclohexane	C_6H_{12}	0.0148	0.0080			
214.0	Methylcyclohexane	C_7H_{14}	0.0219	0.0139			
	AROMATICS						
176.0	Benzene	C ₆ H ₆	0.0134	0.0067			
231.1	Toluene	C_7H_8	0.0179	0.0106			
277 - 282	Ethylbenzene & p,m-Xylene	C_8H_{10}	0.0062	0.0042			
291.9	o-Xylene	C_8H_{10}	0.0041	0.0028			
336.0	1, 2, 4-Trimethylbenzene	C_9H_{12}	0.0036	0.0028			
Total		/ 14	1.0000	1.2999			

TABLE A3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY COMPOSITIONAL ANALYSIS OF FLASHED GAS

Component	Chemical	Mole	Fraction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0255	0.0262		
Carbon Dioxide	CO_2	0.0278	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.7988	0.8216		
Ethane	C ₂	0.0709	0.0729		
Propane	C_3	0.0420	0.0432	27.405	153.866
i-Butane	i-C ₄	0.0061	0.0063	4.763	26.741
n-Butane	n-C ₄	0.0144	0.0148	10.769	60.462
i-Pentane	i-C ₅	0.0029	0.0030	2.506	14.070
n-Pentane	n-C ₅	0.0034	0.0035	2.892	16.238
Hexanes	C_6	0.0023	0.0024	2.255	12.661
Heptanes	C ₇	0.0057	0.0059	6.274	35.227
Octanes	C_8	0.0003	0.0003	0.349	1.960
Nonanes	C ₉	0.0000	0.0000	0.017	0.094
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	57.230	321.318
Propanes Plus	C ₃₊	1.1480	1.1522	114.460	642.637
Butanes Plus	C ₄₊	1.0771	1.0793	114.460	642.637
Pentanes Plus	C ₅₊	1.0290	1.0298	82.292	462.030

Calculated Gas	Properties @ Standa	rd Conditions	Calculated Pseudocritical Properties			
Molecular Weight	21.16 kg/kmol	21.16 lb/lb-mol	Ррс	669.4 psia	4.62 MPa	
Specific Gravity	0.7305 (Air = 1)	0.7305 (Air = 1)	Трс	390.7 R	217.1 K	
MW of C7+	0.58 kg/kmol	0.58 lb/lbmol	Ppc*	661.9 psia	4.56 MPa	
Density of C7+	0.7232 g/cc	723.2 kg/m3	Tpc*	386.3 R	214.6 K	

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net Heating Value @ Standard Conditions			
Dry	1,174.0 Btu/scf	43.82 MJ/m3	Dry	1,064.2 Btu/scf	39.72 MJ/m3	
Wet	1,153.6 Btu/scf	43.06 MJ/m3	Wet	1,045.6 Btu/scf	39.03 MJ/m3	

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

APPENDIX B

MULTI-STAGE SEPARATOR TEST - MATERIAL BALANCE

TABLE B1HUSKY ENERGY - NORTH AMETHYSTWELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLERESERVOIR FLUID STUDYMULTI-STAGE SEPARATOR @ 191.1 F (88.4 C) - MATERIAL BALANCE

Pressu	ire	Measured Oil FVF	Calculated Oil FVF	Absolute Relative Error
(psia)	(MPa)	[1]	[1]	(%)
3060 Psat	21.10	1.2966	1.2966	0.0000
580	4.00	1.0879	1.0890	0.1034
348	2.40	1.0541	1.0545	0.0368
180	1.24	1.0354	1.0353	0.0108
29	0.20	1.0122	1.0107	0.1492
13	0.09	1.0000	0.9999	0.0111
[1] (res bbl/STB) (re	es m3/m3)			
Psat - Saturation Pres	sure			
- Tank conditions	: 60 F (288.7 K)	@ 13 psia (0.09 MI	Pa)	

APPENDIX C

MULTI-STAGE SEPARATOR TEST - LIBERATED GAS ANALYSES

TABLE C1 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 580 psia (4.00 MPa) AND 185.0 F (85.0 C)

Component	Chemical	Mole F	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0052	0.0053		
Carbon Dioxide	CO ₂	0.0202	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8590	0.8767		
Ethane	C ₂	0.0574	0.0586		
Propane	C_3	0.0278	0.0283	18.126	101.771
i-Butane	i-C ₄	0.0039	0.0040	3.040	17.071
n-Butane	n-C ₄	0.0094	0.0096	7.013	39.375
i-Pentane	i-C ₅	0.0029	0.0029	2.502	14.050
n-Pentane	n-C ₅	0.0036	0.0037	3.100	17.402
Hexanes	C ₆	0.0028	0.0029	2.729	15.320
Heptanes	C ₇	0.0072	0.0074	7.892	44.310
Octanes	C_8	0.0006	0.0006	0.703	3.944
Nonanes	C ₉	0.0001	0.0001	0.091	0.511
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	45.196	253.753
Propanes Plus	C ₃₊	0.0582	0.0594	45.196	253.753
Butanes Plus	C ₄₊	0.0304	0.0311	27.070	151.982
Pentanes Plus	C ₅₊	0.0171	0.0175	17.016	95.537

Calculated Gas	Properties @ Standa	rd Conditions	Calculated Pseudocritical Properties			
Molecular Weight	20.01 kg/kmol	20.01 lb/lb-mol	Ррс	670.3 psia	4.62 MPa	
Specific Gravity	0.6908 (Air = 1)	0.6908 (Air = 1)	Трс	382.7 R	212.6 K	
MW of C7+	97.03 kg/kmol	97.03 lb/lbmol	Ppc*	664.5 psia	4.58 MPa	
Density of C7+	0.7241 g/cc	724.1 kg/m3	Tpc*	379.4 R	210.8 K	

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net	Heating Value @ Standard Conditions	
Dry	1,165.2 Btu/scf	43.49 MJ/m3	Dry	1,054.9 Btu/scf	39.38 MJ/m3
Wet	1,144.9 Btu/scf	42.74 MJ/m3	Wet	1,036.6 Btu/scf	38.69 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C2 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 348 psia (2.40 MPa) AND 136.4 F (58.0 C)

Component	Chemical	Mole F	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0046	0.0047		
Carbon Dioxide	CO ₂	0.0213	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.8518	0.8704		
Ethane	C ₂	0.0623	0.0637		
Propane	C_3	0.0288	0.0295	18.836	105.752
i-Butane	i-C ₄	0.0039	0.0040	3.021	16.964
n-Butane	n-C ₄	0.0092	0.0094	6.894	38.708
i-Pentane	i-C ₅	0.0029	0.0030	2.513	14.111
n-Pentane	n-C ₅	0.0036	0.0037	3.119	17.510
Hexanes	C ₆	0.0030	0.0030	2.890	16.223
Heptanes	C ₇	0.0079	0.0081	8.649	48.562
Octanes	C ₈	0.0006	0.0006	0.731	4.106
Nonanes	C ₉	0.0001	0.0001	0.090	0.508
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	46.744	262.446
Propanes Plus	C ₃₊	0.0600	0.0613	46.744	262.446
Butanes Plus	C ₄₊	0.0312	0.0318	27.909	156.693
Pentanes Plus	C ₅₊	0.0180	0.0184	17.993	101.021

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	20.20 kg/kmol	20.20 lb/lb-mol	Ррс	670.8 psia	4.62 MPa
Specific Gravity	0.6973 (Air = 1)	0.6973 (Air = 1)	Трс	384.9 R	213.8 K
MW of C7+	96.97 kg/kmol	96.97 lb/lbmol	Ppc*	664.7 psia	4.58 MPa
Density of C7+	0.7239 g/cc	723.9 kg/m3	Tpc*	381.4 R	211.9 K

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net	Heating Value @ Standard Conditions	
Dry	1,173.5 Btu/scf	43.80 MJ/m3	Dry	1,062.8 Btu/scf	39.67 MJ/m3
Wet	1,153.1 Btu/scf	43.04 MJ/m3	Wet	1,044.3 Btu/scf	38.98 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C3 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 180 psia (1.24 MPa) AND 131.0 F (55.0 C)

Component	Chemical	Mole F	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0034	0.0035		
Carbon Dioxide	CO ₂	0.0262	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.7924	0.8138		
Ethane	C ₂	0.0940	0.0965		
Propane	C ₃	0.0459	0.0471	29.959	168.205
i-Butane	i-C ₄	0.0061	0.0063	4.752	26.680
n-Butane	n-C ₄	0.0140	0.0144	10.489	58.890
i-Pentane	i-C ₅	0.0035	0.0036	3.047	17.106
n-Pentane	n-C ₅	0.0042	0.0043	3.595	20.186
Hexanes	C ₆	0.0028	0.0029	2.780	15.606
Heptanes	C ₇	0.0069	0.0071	7.554	42.412
Octanes	C_8	0.0005	0.0005	0.549	3.082
Nonanes	C ₉	0.0001	0.0001	0.074	0.414
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	62.798	352.581
Propanes Plus	C ₃₊	0.0840	0.0862	62.798	352.581
Butanes Plus	C ₄₊	0.0381	0.0391	32.839	184.377
Pentanes Plus	C ₅₊	0.0179	0.0184	17.598	98.807

Calculated Gas	s Properties @ Standa	rd Conditions	Calcu	ated Pseudocritical Properties	
Molecular Weight	21.50 kg/kmol	21.50 lb/lb-mol	Ррс	672.6 psia	4.64 MPa
Specific Gravity	0.7423 (Air = 1)	0.7423 (Air = 1)	Трс	400.7 R	222.6 K
MW of C7+	96.86 kg/kmol	96.86 lb/lbmol	Ppc*	665.6 psia	4.59 MPa
Density of C7+	0.7237 g/cc	723.7 kg/m3	Tpc*	396.5 R	220.3 K

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net	Heating Value @ Standard Conditions		
Dry	1,233.1 Btu/scf	46.03 MJ/m3	Dry	1,118.5 Btu/scf	41.75 MJ/m3	
Wet	1,211.6 Btu/scf	45.23 MJ/m3	Wet	1,099.0 Btu/scf	41.02 MJ/m3	

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C4 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 29 psia (0.20 MPa) AND 122.0 F (50.0 C)

Component	Chemical	Mole F	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0009	0.0010		
Carbon Dioxide	CO_2	0.0294	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.5564	0.5733		
Ethane	C ₂	0.1687	0.1738		
Propane	C ₃	0.1264	0.1303	82.568	463.581
i-Butane	i-C ₄	0.0198	0.0204	15.331	86.076
n-Butane	n-C ₄	0.0476	0.0491	35.626	200.021
i-Pentane	i-C ₅	0.0132	0.0136	11.458	64.330
n-Pentane	n-C ₅	0.0150	0.0155	12.927	72.578
Hexanes	C_6	0.0075	0.0078	7.360	41.325
Heptanes	C ₇	0.0143	0.0147	15.666	87.959
Octanes	C_8	0.0005	0.0005	0.627	3.518
Nonanes	C ₉	0.0001	0.0001	0.071	0.400
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	181.635	1019.790
Propanes Plus	C_{3^+}	0.2444	0.2519	181.635	1019.790
Butanes Plus	C ₄₊	0.1180	0.1216	99.066	556.209
Pentanes Plus	C ₅₊	0.0506	0.0522	48.110	270.111

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	28.94 kg/kmol	28.94 lb/lb-mol	Ррс	660.6 psia	4.55 MPa
Specific Gravity	0.9990 (Air = 1)	0.9990 (Air = 1)	Трс	480.2 R	266.8 K
MW of C7+	96.47 kg/kmol	96.47 lb/lbmol	Ppc*	654.3 psia	4.51 MPa
Density of C7+	0.7229 g/cc	722.9 kg/m3	Tpc*	475.6 R	264.2 K

Calculated Gross	Heating Value @ Stan	dard Conditions	Calculated Net	Calculated Net Heating Value @ Standard Conditions	
Dry	1,629.5 Btu/scf	60.82 MJ/m3	Dry	1,488.4 Btu/scf	55.56 MJ/m3
Wet	1,601.1 Btu/scf	59.77 MJ/m3	Wet	1,462.5 Btu/scf	54.59 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)

TABLE C5 HUSKY ENERGY - NORTH AMETHYST WELL K-15 - BEN NEVIS - AVALON - BOTTOMHOLE SAMPLE RESERVOIR FLUID STUDY

MULTI-STAGE SEPARATOR GAS COMPOSITION @ 13 psia (0.09 MPa) AND 60.0 F (15.6 C)

Component	Chemical	Mole I	raction	Liquid V	olume
Name	Symbol	As Analyzed	Acid Gas Free	STB/MMscf	mL/m3
Nitrogen	N_2	0.0006	0.0006		
Carbon Dioxide	CO ₂	0.0474	0.0000		
Hydrogen Sulphide	H_2S	0.0000	0.0000		
Methane	C_1	0.3840	0.4031		
Ethane	C ₂	0.2304	0.2419		
Propane	C ₃	0.1693	0.1777	110.545	620.653
i-Butane	i-C ₄	0.0246	0.0258	19.080	107.127
n-Butane	n-C ₄	0.0586	0.0615	43.823	246.044
i-Pentane	i-C ₅	0.0149	0.0157	12.971	72.824
n-Pentane	n-C ₅	0.0194	0.0204	16.706	93.798
Hexanes	C_6	0.0147	0.0154	14.332	80.468
Heptanes	C ₇	0.0349	0.0366	38.162	214.260
Octanes	C_8	0.0012	0.0012	1.418	7.960
Nonanes	C ₉	0.0001	0.0001	0.127	0.712
Decanes	C ₁₀	0.0000	0.0000	0.000	0.000
Undecane	C ₁₁	0.0000	0.0000	0.000	0.000
Dodecanes Plus	C ₁₂₊	0.0000	0.0000	0.000	0.000
Total		1.0000	1.0000	257.164	1443.847
Propanes Plus	C ₃₊	0.3376	0.3544	257.164	1443.847
Butanes Plus	C ₄₊	0.1683	0.1767	146.619	823.194
Pentanes Plus	C ₅₊	0.0852	0.0894	83.716	470.023

Calculated Gas Properties @ Standard Conditions		Calculated Pseudocritical Properties			
Molecular Weight	34.72 kg/kmol	34.72 lb/lb-mol	Ррс	657.6 psia	4.53 MPa
Specific Gravity	1.1986 (Air = 1)	1.1986 (Air = 1)	Трс	537.6 R	298.7 K
MW of C7+	96.42 kg/kmol	96.42 lb/lbmol	Ppc*	649.3 psia	4.48 MPa
Density of C7+	0.7229 g/cc	722.9 kg/m3	Tpc*	530.8 R	294.9 K

Calculated Gross Heating Value @ Standard Conditions			Calculated Net Heating Value @ Standard Conditions		
Dry	1,899.7 Btu/scf	70.91 MJ/m3	Dry	1,741.1 Btu/scf	64.99 MJ/m3
Wet	1,866.6 Btu/scf	69.68 MJ/m3	Wet	1,710.8 Btu/scf	63.86 MJ/m3

Standard Conditions: 60 F (288.7 K) @ 14.696 psia (0.101325 MPa)